The Alperin-McKay Conjecture for metacyclic, minimal non-abelian defect groups
HTML articles powered by AMS MathViewer
- by Benjamin Sambale
- Proc. Amer. Math. Soc. 143 (2015), 4291-4304
- DOI: https://doi.org/10.1090/S0002-9939-2015-12637-8
- Published electronically: April 1, 2015
- PDF | Request permission
Abstract:
We prove the Alperin-McKay Conjecture for all $p$-blocks of finite groups with metacyclic, minimal non-abelian defect groups. These are precisely the metacyclic groups whose derived subgroup have order $p$. In the special case $p=3$, we also verify Alperin’s Weight Conjecture for these defect groups. Moreover, in case $p=5$ we do the same for the non-abelian defect groups $C_{25}\rtimes C_{5^n}$. The proofs do not rely on the classification of the finite simple groups.References
- Jianbei An, Controlled blocks of the finite quasisimple groups for odd primes, Adv. Math. 227 (2011), no. 3, 1165–1194. MR 2799604, DOI 10.1016/j.aim.2011.03.003
- Michael Aschbacher, Radha Kessar, and Bob Oliver, Fusion systems in algebra and topology, London Mathematical Society Lecture Note Series, vol. 391, Cambridge University Press, Cambridge, 2011. MR 2848834, DOI 10.1017/CBO9781139003841
- Richard Brauer, Defect groups in the theory of representations of finite groups, Illinois J. Math. 13 (1969), 53–73. MR 246979
- Richard Brauer, On $2$-blocks with dihedral defect groups, Symposia Mathematica, Vol. XIII (Convegno di Gruppi Abeliani & Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972) Academic Press, London, 1974, pp. 367–393. MR 0354838
- Michel Broué and Jørn B. Olsson, Subpair multiplicities in finite groups, J. Reine Angew. Math. 371 (1986), 125–143. MR 859323
- E. C. Dade, Blocks with cyclic defect groups, Ann. of Math. (2) 84 (1966), 20–48. MR 200355, DOI 10.2307/1970529
- Jill Dietz, Stable splittings of classifying spaces of metacyclic $p$-groups, $p$ odd, J. Pure Appl. Algebra 90 (1993), no. 2, 115–136. MR 1250764, DOI 10.1016/0022-4049(93)90125-D
- Charles W. Eaton, Generalisations of conjectures of Brauer and Olsson, Arch. Math. (Basel) 81 (2003), no. 6, 621–626. MR 2029237, DOI 10.1007/s00013-003-0832-y
- Charles W. Eaton, Radha Kessar, Burkhard Külshammer, and Benjamin Sambale, 2-blocks with abelian defect groups, Adv. Math. 254 (2014), 706–735. MR 3161112, DOI 10.1016/j.aim.2013.12.024
- Charles W. Eaton and Alexander Moretó, Extending Brauer’s height zero conjecture to blocks with nonabelian defect groups, Int. Math. Res. Not. IMRN 20 (2014), 5581–5601. MR 3271182, DOI 10.1093/imrn/rnt131
- Karin Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Mathematics, vol. 1428, Springer-Verlag, Berlin, 1990. MR 1064107, DOI 10.1007/BFb0084003
- Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. MR 661045
- Mitsuo Fujii, On determinants of Cartan matrices of $p$-blocks, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), no. 8, 401–403. MR 596014
- Sheng Gao, On Brauer’s $k(B)$-problem for blocks with metacyclic defect groups of odd order, Arch. Math. (Basel) 96 (2011), no. 6, 507–512. MR 2821468, DOI 10.1007/s00013-011-0265-y
- Sheng Gao, Blocks of full defect with nonabelian metacyclic defect groups, Arch. Math. (Basel) 98 (2012), no. 1, 1–12. MR 2885527, DOI 10.1007/s00013-011-0337-z
- Sheng Gao and Ji-wen Zeng, On the number of ordinary irreducible characters in a $p$-block with a minimal nonabelian defect group, Comm. Algebra 39 (2011), no. 9, 3278–3297. MR 2845573, DOI 10.1080/00927872.2010.501775
- Stuart Hendren, Extra special defect groups of order $p^3$ and exponent $p^2$, J. Algebra 291 (2005), no. 2, 457–491. MR 2163548, DOI 10.1016/j.jalgebra.2005.05.002
- Lászlo Héthelyi, Burkhard Külshammer, and Benjamin Sambale, A note on Olsson’s conjecture, J. Algebra 398 (2014), 364–385. MR 3123771, DOI 10.1016/j.jalgebra.2012.08.010
- Miles Holloway, Shigeo Koshitani, and Naoko Kunugi, Blocks with nonabelian defect groups which have cyclic subgroups of index $p$, Arch. Math. (Basel) 94 (2010), no. 2, 101–116. MR 2592757, DOI 10.1007/s00013-009-0075-7
- H. Horimoto and A. Watanabe, On a perfect isometry between principal p-blocks of finite groups with cyclic p-hyperfocal subgroups, preprint.
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- I. M. Isaacs and Gabriel Navarro, New refinements of the McKay conjecture for arbitrary finite groups, Ann. of Math. (2) 156 (2002), no. 1, 333–344. MR 1935849, DOI 10.2307/3597192
- R. Kessar, M. Linckelmann and G. Navarro, A characterisation of nilpotent blocks, arXiv:1402.5871v1.
- Masao Kiyota, On $3$-blocks with an elementary abelian defect group of order $9$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 (1984), no. 1, 33–58. MR 743518
- Shigeo Koshitani and Naoko Kunugi, Broué’s conjecture holds for principal 3-blocks with elementary abelian defect group of order 9, J. Algebra 248 (2002), no. 2, 575–604. MR 1882112, DOI 10.1006/jabr.2001.9048
- Shigeo Koshitani and Hyoue Miyachi, Donovan conjecture and Loewy length for principal 3-blocks of finite groups with elementary abelian Sylow 3-subgroup of order 9, Comm. Algebra 29 (2001), no. 10, 4509–4522. MR 1854148, DOI 10.1081/AGB-100106771
- Burkhard Külshammer, On $p$-blocks of $p$-solvable groups, Comm. Algebra 9 (1981), no. 17, 1763–1785. MR 631888, DOI 10.1080/00927878108822682
- Klaus Lux and Herbert Pahlings, Representations of groups, Cambridge Studies in Advanced Mathematics, vol. 124, Cambridge University Press, Cambridge, 2010. A computational approach. MR 2680716, DOI 10.1017/CBO9780511750915
- Gunter Malle and Gabriel Navarro, Inequalities for some blocks of finite groups, Arch. Math. (Basel) 87 (2006), no. 5, 390–399. MR 2269921, DOI 10.1007/s00013-006-1769-8
- Hirosi Nagao and Yukio Tsushima, Representations of finite groups, Academic Press, Inc., Boston, MA, 1989. Translated from the Japanese. MR 998775
- Jørn Børling Olsson, On $2$-blocks with quaternion and quasidihedral defect groups, J. Algebra 36 (1975), no. 2, 212–241. MR 376841, DOI 10.1016/0021-8693(75)90099-X
- Jørn B. Olsson, Lower defect groups, Comm. Algebra 8 (1980), no. 3, 261–288. MR 558114, DOI 10.1080/00927878008822458
- Lluís Puig, Nilpotent blocks and their source algebras, Invent. Math. 93 (1988), no. 1, 77–116. MR 943924, DOI 10.1007/BF01393688
- Lluís Puig and Yoko Usami, Perfect isometries for blocks with abelian defect groups and Klein four inertial quotients, J. Algebra 160 (1993), no. 1, 192–225. MR 1237084, DOI 10.1006/jabr.1993.1184
- Geoffrey R. Robinson, Large character heights, $Qd(p)$, and the ordinary weight conjecture, J. Algebra 319 (2008), no. 2, 657–679. MR 2381801, DOI 10.1016/j.jalgebra.2006.05.038
- Geoffrey R. Robinson, On the focal defect group of a block, characters of height zero, and lower defect group multiplicities, J. Algebra 320 (2008), no. 6, 2624–2628. MR 2441776, DOI 10.1016/j.jalgebra.2008.04.032
- Benjamin Sambale, Fusion systems on metacyclic 2-groups, Osaka J. Math. 49 (2012), no. 2, 325–329. MR 2945751
- Benjamin Sambale, Brauer’s height zero conjecture for metacyclic defect groups, Pacific J. Math. 262 (2013), no. 2, 481–507. MR 3069071, DOI 10.2140/pjm.2013.262.481
- Benjamin Sambale, Further evidence for conjectures in block theory, Algebra Number Theory 7 (2013), no. 9, 2241–2273. MR 3152013, DOI 10.2140/ant.2013.7.2241
- Radu Stancu, Control of fusion in fusion systems, J. Algebra Appl. 5 (2006), no. 6, 817–837. MR 2286725, DOI 10.1142/S0219498806002034
- Yoko Usami, On $p$-blocks with abelian defect groups and inertial index $2$ or $3$. I, J. Algebra 119 (1988), no. 1, 123–146. MR 971349, DOI 10.1016/0021-8693(88)90079-8
- A. Watanabe, Appendix on blocks with elementary abelian defect group of order 9, in: Representation Theory of Finite Groups and Algebras, and Related Topics (Kyoto, 2008), 9–17, Kyoto University Research Institute for Mathematical Sciences, Kyoto, 2010.
- Sheng Yang, On Olsson’s conjecture for blocks with metacyclic defect groups of odd order, Arch. Math. (Basel) 96 (2011), no. 5, 401–408. MR 2805343, DOI 10.1007/s00013-011-0251-4
Bibliographic Information
- Benjamin Sambale
- Affiliation: Institut für Mathematik, Friedrich-Schiller-Universität, 07743 Jena, Germany
- MR Author ID: 928720
- ORCID: 0000-0001-9914-1652
- Email: benjamin.sambale@uni-jena.de
- Received by editor(s): April 13, 2014
- Received by editor(s) in revised form: July 16, 2014
- Published electronically: April 1, 2015
- Communicated by: Pham Huu Tiep
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 4291-4304
- MSC (2010): Primary 20C15, 20C20
- DOI: https://doi.org/10.1090/S0002-9939-2015-12637-8
- MathSciNet review: 3373928