On simultaneous Pell equations and related Thue equations
HTML articles powered by AMS MathViewer
- by Bo He, Ákos Pintér and Alain Togbé
- Proc. Amer. Math. Soc. 143 (2015), 4685-4693
- DOI: https://doi.org/10.1090/proc/12608
- Published electronically: April 1, 2015
- PDF | Request permission
Abstract:
In this paper, we prove that the simultaneous Pell equations \[ x^2-(m^2-1)y^2=1, z^2-(n^2-1)y^2=1 \] have only a positive integer solution $(x, y, z) = (m, 1, n)$ if $m < n \le m+m^{\varepsilon }, 0 < \varepsilon < 1$ and $m \ge 202304^{\frac {1}{1-\varepsilon }}$. Using a computational reduction method we can omit the lower bound for $m$ when $m<n\le m^{\frac {1}{5}}$. Moreover, we apply our main result to a family of Thue equations in two parameters studied by Jadrijević.References
- W. S. Anglin, Simultaneous Pell equations, Math. Comp. 65 (1996), no. 213, 355–359. MR 1325861, DOI 10.1090/S0025-5718-96-00687-4
- A. Baker and H. Davenport, The equations $3x^{2}-2=y^{2}$ and $8x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. MR 248079, DOI 10.1093/qmath/20.1.129
- Michael A. Bennett, Solving families of simultaneous Pell equations, J. Number Theory 67 (1997), no. 2, 246–251. MR 1486502, DOI 10.1006/jnth.1997.2188
- Michael A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math. 498 (1998), 173–199. MR 1629862, DOI 10.1515/crll.1998.049
- Michael A. Bennett, Mihai Cipu, Maurice Mignotte, and Ryotaro Okazaki, On the number of solutions of simultaneous Pell equations. II, Acta Arith. 122 (2006), no. 4, 407–417. MR 2234424, DOI 10.4064/aa122-4-4
- Leonard Eugene Dickson, History of the theory of numbers. Vol. II: Diophantine analysis, Chelsea Publishing Co., New York, 1966. MR 0245500
- Andrej Dujella and Attila Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 195, 291–306. MR 1645552, DOI 10.1093/qjmath/49.195.291
- Borka Jadrijević, A system of Pellian equations and related two-parametric family of quartic Thue equations, Rocky Mountain J. Math. 35 (2005), no. 2, 547–571. MR 2135585, DOI 10.1216/rmjm/1181069746
- Borka Jadrijević, On two-parametric family of quartic Thue equations, J. Théor. Nombres Bordeaux 17 (2005), no. 1, 161–167 (English, with English and French summaries). MR 2152217, DOI 10.5802/jtnb.483
- Michel Laurent, Linear forms in two logarithms and interpolation determinants. II, Acta Arith. 133 (2008), no. 4, 325–348. MR 2457264, DOI 10.4064/aa133-4-3
- Maohua Le, A note on the simultaneous Pell equations $x^2-ay^2=1$ and $z^2-by^2=1$, Glas. Mat. Ser. III 47(67) (2012), no. 1, 53–59. MR 2942774, DOI 10.3336/gm.47.1.04
- D. W. Masser and J. H. Rickert, Simultaneous Pell equations, J. Number Theory 61 (1996), no. 1, 52–66. MR 1418319, DOI 10.1006/jnth.1996.0137
- Ken Ono, Euler’s concordant forms, Acta Arith. 78 (1996), no. 2, 101–123. MR 1424534, DOI 10.4064/aa-78-2-101-123
- C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss., 1929, 1.
- Hans Peter Schlickewei, The number of subspaces occurring in the $p$-adic subspace theorem in Diophantine approximation, J. Reine Angew. Math. 406 (1990), 44–108. MR 1048236, DOI 10.1515/crll.1990.406.44
- A. Thue, Über Annäherungenswerte algebraischen Zahlen, J. Reine Angew. Math. 135 (1909), 284–305.
- Pingzhi Yuan, On the number of solutions of simultaneous Pell equations, Acta Arith. 101 (2002), no. 3, 215–221. MR 1875840, DOI 10.4064/aa101-3-2
- Pingzhi Yuan, Simultaneous Pell equations, Acta Arith. 115 (2004), no. 2, 119–131. MR 2099834, DOI 10.4064/aa115-2-2
Bibliographic Information
- Bo He
- Affiliation: Department of Mathematics, Aba Teacher’s College, Wenchuan, Sichuan 623000, People’s Republic of China
- MR Author ID: 825248
- Email: bhe@live.cn
- Ákos Pintér
- Affiliation: Institute of Mathematics, MTA-DE Research Group “Equations, Functions and Curves”, Hungarian Academy of Sciences and University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary
- Email: apinter@science.unideb.hu
- Alain Togbé
- Affiliation: Department of Mathematics, Purdue University North Central, 1401 S. U.S. 421, Westville, Indiana 46391
- Email: atogbe@pnc.edu
- Received by editor(s): September 4, 2013
- Received by editor(s) in revised form: July 31, 2014, and August 13, 2014
- Published electronically: April 1, 2015
- Additional Notes: The first author was supported by the Natural Science Foundation of China (Grant No. 11301363), the Sichuan provincial scientific research and innovation team in Universities (Grant No. 14TD0040), and the Natural Science Foundation of Education Department of Sichuan Province (Grant No. 13ZA0037 and No. 13ZB0036)
The second author was supported in part by the Hungarian Academy of Sciences, OTKA grants K100339, NK101680, NK104208 and by the European Union and the European Social Fund through project Supercomputer, the national virtual lab (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0010) - Communicated by: Matthew A. Papanikolas
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 4685-4693
- MSC (2010): Primary 11D09, 11D45, 11B37, 11J86
- DOI: https://doi.org/10.1090/proc/12608
- MathSciNet review: 3391027