The number of maximal sum-free subsets of integers
HTML articles powered by AMS MathViewer
- by József Balogh, Hong Liu, Maryam Sharifzadeh and Andrew Treglown
- Proc. Amer. Math. Soc. 143 (2015), 4713-4721
- DOI: https://doi.org/10.1090/S0002-9939-2015-12615-9
- Published electronically: April 2, 2015
- PDF | Request permission
Abstract:
Cameron and Erdős raised the question of how many maximal sum-free sets there are in $\{1, \dots , n\}$, giving a lower bound of $2^{\lfloor n/4 \rfloor }$. In this paper we prove that there are in fact at most $2^{(1/4+o(1))n}$ maximal sum-free sets in $\{1, \dots , n\}$. Our proof makes use of container and removal lemmas of Green as well as a result of Deshouillers, Freiman, Sós and Temkin on the structure of sum-free sets.References
- Noga Alon, József Balogh, Robert Morris, and Wojciech Samotij, A refinement of the Cameron-Erdős conjecture, Proc. Lond. Math. Soc. (3) 108 (2014), no. 1, 44–72. MR 3162820, DOI 10.1112/plms/pdt033
- J. Balogh, H. Liu, M. Sharifzadeh and A. Treglown, Sharp bound on the number of maximal sum-free subsets of integers, manuscript.
- J. Balogh, R. Morris and W. Samotij, Independent sets in hypergraphs, J. Amer. Math. Soc., to appear.
- József Balogh and Šárka Petříčková, The number of the maximal triangle-free graphs, Bull. Lond. Math. Soc. 46 (2014), no. 5, 1003–1006. MR 3262201, DOI 10.1112/blms/bdu059
- P. J. Cameron and P. Erdős, On the number of sets of integers with various properties, Number theory (Banff, AB, 1988) de Gruyter, Berlin, 1990, pp. 61–79. MR 1106651
- Peter J. Cameron and Paul Erdős, Notes on sum-free and related sets, Combin. Probab. Comput. 8 (1999), no. 1-2, 95–107. Recent trends in combinatorics (Mátraháza, 1995). MR 1684624, DOI 10.1017/S0963548398003435
- Jean-Marc Deshouillers, Gregory A. Freiman, Vera Sós, and Mikhail Temkin, On the structure of sum-free sets. II, Astérisque 258 (1999), xii, 149–161 (English, with English and French summaries). Structure theory of set addition. MR 1701193
- Ben Green, The Cameron-Erdős conjecture, Bull. London Math. Soc. 36 (2004), no. 6, 769–778. MR 2083752, DOI 10.1112/S0024609304003650
- B. Green, A Szemerédi-type regularity lemma in abelian groups, with applications, Geom. Funct. Anal. 15 (2005), no. 2, 340–376. MR 2153903, DOI 10.1007/s00039-005-0509-8
- B. Green and I. Z. Ruzsa, Counting sumsets and sum-free sets modulo a prime, Studia Sci. Math. Hungar. 41 (2004), no. 3, 285–293. MR 2082746, DOI 10.1556/SScMath.41.2004.3.2
- Mihály Hujter and Zsolt Tuza, The number of maximal independent sets in triangle-free graphs, SIAM J. Discrete Math. 6 (1993), no. 2, 284–288. MR 1215234, DOI 10.1137/0406022
- L. Ilinca and J. Kahn, Counting maximal antichains and independent sets, Order 30 (2013), no. 2, 427–435. MR 3063196, DOI 10.1007/s11083-012-9253-5
- Daniel Král, Oriol Serra, and Lluís Vena, A combinatorial proof of the removal lemma for groups, J. Combin. Theory Ser. A 116 (2009), no. 4, 971–978. MR 2513645, DOI 10.1016/j.jcta.2008.12.003
- Tomasz Łuczak and Tomasz Schoen, On the number of maximal sum-free sets, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2205–2207. MR 1823901, DOI 10.1090/S0002-9939-00-05815-9
- J. W. Moon and L. Moser, On cliques in graphs, Israel J. Math. 3 (1965), 23–28. MR 182577, DOI 10.1007/BF02760024
- A. A. Sapozhenko, The Cameron-Erdős conjecture, Dokl. Akad. Nauk 393 (2003), no. 6, 749–752 (Russian). MR 2088503
- A. A. Sapozhenko, On the number of independent sets in graphs, Problems of theoretical cybernetics, Kazan. Gos. Univ., Kazan′2004, pp. 85–93 (Russian, with Russian summary). MR 2161000
- D. Saxton and A. Thomason, Hypergraph containers, preprint.
- I. Schur, Uber die Kongruenz $x^m +y^m \equiv z^m$ (mod $p$), ber. Deutsch. Mat. Verein., 25, (1916), 114–117.
- Guy Wolfovitz, Bounds on the number of maximal sum-free sets, European J. Combin. 30 (2009), no. 7, 1718–1723. MR 2548662, DOI 10.1016/j.ejc.2009.03.015
Bibliographic Information
- József Balogh
- Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801 — and — Bolyai Institute, University of Szeged, Szeged, Hungary
- Email: jobal@math.uiuc.edu
- Hong Liu
- Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801
- Email: hliu36@illinois.edu
- Maryam Sharifzadeh
- Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801
- Email: sharifz2@illinois.edu
- Andrew Treglown
- Affiliation: School of Mathematics, University of Birmingham, United Kingdom
- Email: a.c.treglown@bham.ac.uk
- Received by editor(s): May 12, 2014
- Received by editor(s) in revised form: July 19, 2014, July 22, 2014, and August 25, 2014
- Published electronically: April 2, 2015
- Additional Notes: The authors’ research was partially supported by Simons Fellowship, NSF CAREER Grant DMS-0745185, Arnold O. Beckman Research Award (UIUC Campus Research Board 13039) and Marie Curie FP7-PEOPLE-2012-IIF 327763.
- Communicated by: Patricia L. Hersh
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 4713-4721
- MSC (2010): Primary 11B75; Secondary 05C69
- DOI: https://doi.org/10.1090/S0002-9939-2015-12615-9
- MathSciNet review: 3391030