Supercuspidal ramification of modular endomorphism algebras
HTML articles powered by AMS MathViewer
- by Shalini Bhattacharya and Eknath Ghate
- Proc. Amer. Math. Soc. 143 (2015), 4669-4684
- DOI: https://doi.org/10.1090/proc/12629
- Published electronically: May 7, 2015
- PDF | Request permission
Abstract:
The endomorphism algebra $X_f$ attached to a non-CM primitive cusp form $f$ of weight at least two is a 2-torsion element in the Brauer group of a number field $F$. We give formulas for the ramification of $X_f$ locally at primes lying above the odd supercuspidal primes of $f$. We show that the local Brauer class is determined by the underlying local Galois representation together with an auxiliary Fourier coefficient.References
- A. O. L. Atkin and Wen Ch’ing Winnie Li, Twists of newforms and pseudo-eigenvalues of $W$-operators, Invent. Math. 48 (1978), no. 3, 221–243. MR 508986, DOI 10.1007/BF01390245
- A. F. Brown and E. P. Ghate, Endomorphism algebras of motives attached to elliptic modular forms, Ann. Inst. Fourier (Grenoble) 53 (2003), no. 6, 1615–1676 (English, with English and French summaries). MR 2038777, DOI 10.5802/aif.1989
- Debargha Banerjee and Eknath Ghate, Adjoint lifts and modular endomorphism algebras, Israel J. Math. 195 (2013), no. 2, 507–543. MR 3096563, DOI 10.1007/s11856-012-0108-y
- Colin J. Bushnell and Guy Henniart, The local Langlands conjecture for $\rm GL(2)$, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 335, Springer-Verlag, Berlin, 2006. MR 2234120, DOI 10.1007/3-540-31511-X
- J.W.S. Cassels and A. Fröhlich, Algebraic Number Theory, London Mathematical Society, 2nd edition, 2010.
- Eknath Ghate, Enrique González-Jiménez, and Jordi Quer, On the Brauer class of modular endomorphism algebras, Int. Math. Res. Not. 12 (2005), 701–723. MR 2146605, DOI 10.1155/IMRN.2005.701
- David Loeffler and Jared Weinstein, On the computation of local components of a newform, Math. Comp. 81 (2012), no. 278, 1179–1200. MR 2869056, DOI 10.1090/S0025-5718-2011-02530-5
- Jordi Quer, La classe de Brauer de l’algèbre d’endomorphismes d’une variété abélienne modulaire, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 3, 227–230 (French, with English and French summaries). MR 1650241, DOI 10.1016/S0764-4442(98)80137-7
- J. Quer, Tables of modular endomorphism algebras $X_f = \mathrm {End}(M_f )$ of motives $M_f$ attached to non-CM newforms, 255 pages, 2005.
- Kenneth A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), no. 1, 43–62. MR 594532, DOI 10.1007/BF01457819
- K. A. Ribet, Endomorphism algebras of abelian varieties attached to newforms of weight $2$, Seminar on Number Theory, Paris 1979–80, Progr. Math., vol. 12, Birkhäuser, Boston, Mass., 1981, pp. 263–276. MR 633903
- Kenneth A. Ribet, Abelian varieties over $\bf Q$ and modular forms, Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, pp. 241–261. MR 2058653, DOI 10.1007/978-3-0348-7919-4_{1}5
Bibliographic Information
- Shalini Bhattacharya
- Affiliation: Tata Institute of Fundamental Research, Homi Bhabha road, Mumbai 400005, India
- Email: shalini@math.tifr.res.in
- Eknath Ghate
- Affiliation: Tata Institute of Fundamental Research, Homi Bhabha road, Mumbai 400005, India
- Email: eghate@math.tifr.res.in
- Received by editor(s): February 14, 2014
- Received by editor(s) in revised form: August 11, 2014
- Published electronically: May 7, 2015
- Communicated by: Matthew A. Papanikolas
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 4669-4684
- MSC (2010): Primary 11F30; Secondary 11F11, 11F80
- DOI: https://doi.org/10.1090/proc/12629
- MathSciNet review: 3391026