A Fourier analytic proof of the Blaschke-Santaló Inequality
HTML articles powered by AMS MathViewer
- by Gabriele Bianchi and Michael Kelly
- Proc. Amer. Math. Soc. 143 (2015), 4901-4912
- DOI: https://doi.org/10.1090/proc/12785
- Published electronically: July 10, 2015
- PDF | Request permission
Abstract:
The Blaschke-Santaló Inequality is the assertion that the volume product of a centrally symmetric convex body in Euclidean space is maximized by (and only by) ellipsoids. In this paper we give a Fourier analytic proof of this fact.References
- N. I. Ahiezer, On the theory of entire functions of finite degree, Doklady Akad. Nauk SSSR (N.S.) 63 (1948), 475–478 (Russian). MR 0027333
- V. V. Arestov and E. E. Berdysheva, The Turán problem for a class of polytopes, East J. Approx. 8 (2002), no. 3, 381–388. MR 1932340
- Gabriele Bianchi, The covariogram and Fourier-Laplace transform in $\mathbb {C}^n$, 2013, arXiv:1312.7816 [math.MG].
- W. Blaschke, Über affine Geometrie VII: Neue Extremeingenschaften von Ellipse und Ellipsoid, Ber. Verh. Sächs. Akad. Wiss., Math. Phys. Kl. 69 (1917), 412–420.
- J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in $\textbf {R}^n$, Invent. Math. 88 (1987), no. 2, 319–340. MR 880954, DOI 10.1007/BF01388911
- Ralph Philip Boas Jr., Entire functions, Academic Press, Inc., New York, 1954. MR 0068627
- J. W. S. Cassels, Obituary: Kurt Mahler, Bull. London Math. Soc. 24 (1992), no. 4, 381–397. MR 1165384, DOI 10.1112/blms/24.4.381
- Louis de Branges, Hilbert spaces of entire functions, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1968. MR 0229011
- Werner Ehm, Tilmann Gneiting, and Donald Richards, Convolution roots of radial positive definite functions with compact support, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4655–4685. MR 2067138, DOI 10.1090/S0002-9947-04-03502-0
- D. V. Gorbachev, An extremal problem for periodic functions with support in a ball, Mat. Zametki 69 (2001), no. 3, 346–352 (Russian, with Russian summary); English transl., Math. Notes 69 (2001), no. 3-4, 313–319. MR 1846833, DOI 10.1023/A:1010275206760
- Jeffrey J. Holt and Jeffrey D. Vaaler, The Beurling-Selberg extremal functions for a ball in Euclidean space, Duke Math. J. 83 (1996), no. 1, 202–248. MR 1388849, DOI 10.1215/S0012-7094-96-08309-X
- Jaegil Kim, Minimal volume product near Hanner polytopes, J. Funct. Anal. 266 (2014), no. 4, 2360–2402. MR 3150164, DOI 10.1016/j.jfa.2013.08.008
- Mihail N. Kolountzakis and Szilárd Gy. Révész, Turán’s extremal problem for positive definite functions on groups, J. London Math. Soc. (2) 74 (2006), no. 2, 475–496. MR 2269590, DOI 10.1112/S0024610706023234
- Kurt Mahler, Ein Minimalproblem für Konvexe Polygone, Mathematica (Zutphen) B (1939), 118–127.
- Mathieu Meyer and Alain Pajor, On the Blaschke-Santaló inequality, Arch. Math. (Basel) 55 (1990), no. 1, 82–93. MR 1059519, DOI 10.1007/BF01199119
- M. Meyer and S. Reisner, Characterizations of ellipsoids by section-centroid location, Geom. Dedicata 31 (1989), no. 3, 345–355. MR 1025195, DOI 10.1007/BF00147465
- Fedor Nazarov, The Hörmander proof of the Bourgain-Milman theorem, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 2050, Springer, Heidelberg, 2012, pp. 335–343. MR 2985302, DOI 10.1007/978-3-642-29849-3_{2}0
- Fedor Nazarov, Fedor Petrov, Dmitry Ryabogin, and Artem Zvavitch, A remark on the Mahler conjecture: local minimality of the unit cube, Duke Math. J. 154 (2010), no. 3, 419–430. MR 2730574, DOI 10.1215/00127094-2010-042
- C. M. Petty, Affine isoperimetric problems, Discrete geometry and convexity (New York, 1982) Ann. New York Acad. Sci., vol. 440, New York Acad. Sci., New York, 1985, pp. 113–127. MR 809198, DOI 10.1111/j.1749-6632.1985.tb14545.x
- M. Plancherel and G. Pólya, Fonctions entières et intégrales de fourier multiples, Comment. Math. Helv. 10 (1937), no. 1, 110–163 (French). MR 1509570, DOI 10.1007/BF01214286
- Shlomo Reisner, Random polytopes and the volume-product of symmetric convex bodies, Math. Scand. 57 (1985), no. 2, 386–392. MR 832364, DOI 10.7146/math.scand.a-12124
- Shlomo Reisner, Zonoids with minimal volume-product, Math. Z. 192 (1986), no. 3, 339–346. MR 845207, DOI 10.1007/BF01164009
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- Dmitry Ryabogin and Artem Zvavitch, Analytic methods in convex geometry, in preparation.
- J. Saint-Raymond, Sur le volume des corps convexes symétriques, Initiation Seminar on Analysis: G. Choquet-M. Rogalski-J. Saint-Raymond, 20th Year: 1980/1981, Publ. Math. Univ. Pierre et Marie Curie, vol. 46, Univ. Paris VI, Paris, 1981, pp. Exp. No. 11, 25 (French). MR 670798
- L. A. Santaló, An affine invariant for convex bodies of $n$-dimensional space, Portugal. Math. 8 (1949), 155–161 (Spanish). MR 39293
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
- Carl Ludwig Siegel, Über Gitterpunkte in Convexen Körpern und ein Damit Zusammenhängendes Extremalproblem, Acta Math. 65 (1935), no. 1, 307–323 (German). MR 1555407, DOI 10.1007/BF02420949
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- Terence Tao, Structure and randomness, American Mathematical Society, Providence, RI, 2008. Pages from year one of a mathematical blog. MR 2459552, DOI 10.1090/mbk/059
Bibliographic Information
- Gabriele Bianchi
- Affiliation: Dipartimento di Matematica e Informatica “U. Dini”, Università di Firenze
- Email: gabriele.bianchi@unifi.it
- Michael Kelly
- Affiliation: Department of Mathematics, University of Texas
- Email: mkelly@math.utexas.edu
- Received by editor(s): February 10, 2014
- Received by editor(s) in revised form: August 2, 2014
- Published electronically: July 10, 2015
- Communicated by: Alexander Iosevich
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 143 (2015), 4901-4912
- MSC (2010): Primary 52A40, 42A05, 46E22
- DOI: https://doi.org/10.1090/proc/12785
- MathSciNet review: 3391048