Trefoil plumbing
HTML articles powered by AMS MathViewer
- by Sebastian Baader and Pierre Dehornoy
- Proc. Amer. Math. Soc. 144 (2016), 387-397
- DOI: https://doi.org/10.1090/proc/12561
- Published electronically: September 11, 2015
- PDF | Request permission
Abstract:
We give a criterion for an open book to contain an $n$-times iterated Hopf plumbing summand. As an application, we show that fibre surfaces of positive braid knots admit a trefoil plumbing structure.References
- D. Buck, K. Ishihara, M. Rathbun, and K. Shimokawa, Band surgeries and crossing changes between fibered links, arxiv:1304.6781.
- P. Dehornoy, On the zeroes of the Alexander polynomial of a Lorenz knot, arxiv:1110.4178.
- J. Etnyre and Y. Li, The arc complex and contact geometry: non-destabilizable planar open book decompositions of the tight contact 3-sphere, arxiv:1305.5928.
- John Franks and R. F. Williams, Braids and the Jones polynomial, Trans. Amer. Math. Soc. 303 (1987), no. 1, 97–108. MR 896009, DOI 10.1090/S0002-9947-1987-0896009-2
- Emmanuel Giroux and Noah Goodman, On the stable equivalence of open books in three-manifolds, Geom. Topol. 10 (2006), 97–114. MR 2207791, DOI 10.2140/gt.2006.10.97
- Eriko Hironaka, Salem-Boyd sequences and Hopf plumbing, Osaka J. Math. 43 (2006), no. 3, 497–516. MR 2283407
- Ko Honda, William H. Kazez, and Gordana Matić, Right-veering diffeomorphisms of compact surfaces with boundary, Invent. Math. 169 (2007), no. 2, 427–449. MR 2318562, DOI 10.1007/s00222-007-0051-4
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- Lee Rudolph, Quasipositive plumbing (constructions of quasipositive knots and links. V), Proc. Amer. Math. Soc. 126 (1998), no. 1, 257–267. MR 1452826, DOI 10.1090/S0002-9939-98-04407-4
- John R. Stallings, Constructions of fibred knots and links, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 55–60. MR 520522
Bibliographic Information
- Sebastian Baader
- Affiliation: Department of Mathematics, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- MR Author ID: 757518
- Email: sebastian.baader@math.unibe.ch
- Pierre Dehornoy
- Affiliation: Department of Mathematics, Universität Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
- Address at time of publication: Institut Fourier-UMR 5582, Université Grenoble Alpes-CNRS, 38000 Grenoble, France
- Email: pierre.dehornoy@ujf-grenoble.fr
- Received by editor(s): January 24, 2014
- Received by editor(s) in revised form: June 6, 2014
- Published electronically: September 11, 2015
- Additional Notes: The second author was supported by SNF project no. 137548: Knots and Surfaces
- Communicated by: Martin Scharlemann
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 387-397
- MSC (2010): Primary 57M25
- DOI: https://doi.org/10.1090/proc/12561
- MathSciNet review: 3415605