Conjugacy class conditions in locally compact second countable groups
HTML articles powered by AMS MathViewer
- by Phillip Wesolek
- Proc. Amer. Math. Soc. 144 (2016), 399-409
- DOI: https://doi.org/10.1090/proc/12645
- Published electronically: August 18, 2015
- PDF | Request permission
Abstract:
Many non-locally compact second countable groups admit a comeagre conjugacy class. For example, this is the case for $S_{\infty }$, $Aut(\mathbb {Q},<)$, and, less trivially, $Aut(\mathcal {R})$ for $\mathcal {R}$ the random graph. A. Kechris and C. Rosendal ask if a non-trivial locally compact second countable group can admit a comeagre conjugacy class. We answer the question in the negative via an analysis of locally compact second countable groups with topological conditions on a conjugacy class.References
- Ethan Akin, Eli Glasner, and Benjamin Weiss, Generically there is but one self homeomorphism of the Cantor set, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3613–3630. MR 2386239, DOI 10.1090/S0002-9947-08-04450-4
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 1–3, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1998. Translated from the French; Reprint of the 1989 English translation. MR 1728312
- Anton Deitmar and Siegfried Echterhoff, Principles of harmonic analysis, Universitext, Springer, New York, 2009. MR 2457798
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
- Graham Higman, B. H. Neumann, and Hanna Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247–254. MR 32641, DOI 10.1112/jlms/s1-24.4.247
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Alexander S. Kechris and Christian Rosendal, Turbulence, amalgamation, and generic automorphisms of homogeneous structures, Proc. Lond. Math. Soc. (3) 94 (2007), no. 2, 302–350. MR 2308230, DOI 10.1112/plms/pdl007
- Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556, DOI 10.1007/978-1-4613-0041-0
- L. Lévai and L. Pyber, Profinite groups with many commuting pairs or involutions, Arch. Math. (Basel) 75 (2000), no. 1, 1–7. MR 1764885, DOI 10.1007/s000130050466
- Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. MR 0073104
- Luis Ribes and Pavel Zalesskii, Profinite groups, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 40, Springer-Verlag, Berlin, 2010. MR 2599132, DOI 10.1007/978-3-642-01642-4
- J. K. Truss, Generic automorphisms of homogeneous structures, Proc. London Math. Soc. (3) 65 (1992), no. 1, 121–141. MR 1162490, DOI 10.1112/plms/s3-65.1.121
- John S. Wilson, On the structure of compact torsion groups, Monatsh. Math. 96 (1983), no. 1, 57–66. MR 721596, DOI 10.1007/BF01298934
- John S. Wilson, Profinite groups, London Mathematical Society Monographs. New Series, vol. 19, The Clarendon Press, Oxford University Press, New York, 1998. MR 1691054
- E. I. Zel′manov, On periodic compact groups, Israel J. Math. 77 (1992), no. 1-2, 83–95. MR 1194787, DOI 10.1007/BF02808012
Bibliographic Information
- Phillip Wesolek
- Affiliation: Université Catholique de Louvain, Institut de Recherche en Mathématiques et Physique (IRMP), Chemin du Cyclotron 2, box L7.01.02, 1348 Louvain-la-Neuve, Belgique
- Email: phillip.wesolek@uclouvain.be
- Received by editor(s): November 25, 2013
- Received by editor(s) in revised form: September 17, 2014
- Published electronically: August 18, 2015
- Communicated by: Mirna Dzamonja
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 399-409
- MSC (2010): Primary 22D05, 03E15
- DOI: https://doi.org/10.1090/proc/12645
- MathSciNet review: 3415606