A sufficient condition for strong $F$-regularity
HTML articles powered by AMS MathViewer
- by Alessandro De Stefani and Luis Núñez-Betancourt
- Proc. Amer. Math. Soc. 144 (2016), 21-29
- DOI: https://doi.org/10.1090/proc/12676
- Published electronically: June 9, 2015
- PDF | Request permission
Abstract:
Let $(R,\mathfrak {m},K)$ be an $F$-finite Noetherian local ring which has a canonical ideal $I \subsetneq R$. We prove that if $R$ is $S_2$ and $H^{d-1}_{\mathfrak {m}}(R/I)$ is a simple $R\{F\}$-module, then $R$ is a strongly $F$-regular ring. In particular, under these assumptions, $R$ is a Cohen-Macaulay normal domain.References
- Ian M. Aberbach, Extension of weakly and strongly F-regular rings by flat maps, J. Algebra 241 (2001), no. 2, 799–807. MR 1843326, DOI 10.1006/jabr.2001.8785
- Ian M. Aberbach and Florian Enescu, Test ideals and base change problems in tight closure theory, Trans. Amer. Math. Soc. 355 (2003), no. 2, 619–636. MR 1932717, DOI 10.1090/S0002-9947-02-03162-8
- Yôichi Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ. 23 (1983), no. 1, 85–94. MR 692731, DOI 10.1215/kjm/1250521612
- Manuel Blickle and Gebhard Böckle, Cartier modules: finiteness results, J. Reine Angew. Math. 661 (2011), 85–123. MR 2863904, DOI 10.1515/CRELLE.2011.087
- Manuel Blickle and Karl Schwede, $p^{-1}$-linear maps in algebra and geometry, Commutative algebra, Springer, New York, 2013, pp. 123–205. MR 3051373, DOI 10.1007/978-1-4614-5292-8_{5}
- Florian Enescu, Applications of pseudocanonical covers to tight closure problems, J. Pure Appl. Algebra 178 (2003), no. 2, 159–167. MR 1952423, DOI 10.1016/S0022-4049(02)00172-X
- Richard Fedder, $F$-purity and rational singularity, Trans. Amer. Math. Soc. 278 (1983), no. 2, 461–480. MR 701505, DOI 10.1090/S0002-9947-1983-0701505-0
- Shiro Goto, Futoshi Hayasaka, and Shin-Ichiro Iai, The $a$-invariant and Gorensteinness of graded rings associated to filtrations of ideals in regular local rings, Proc. Amer. Math. Soc. 131 (2003), no. 1, 87–94. MR 1929027, DOI 10.1090/S0002-9939-02-06635-2
- Melvin Hochster and Craig Huneke, Tight closure and strong $F$-regularity, Mém. Soc. Math. France (N.S.) 38 (1989), 119–133. Colloque en l’honneur de Pierre Samuel (Orsay, 1987). MR 1044348
- Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR 1017784, DOI 10.1090/S0894-0347-1990-1017784-6
- Melvin Hochster and Craig Huneke, $F$-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994), no. 1, 1–62. MR 1273534, DOI 10.1090/S0002-9947-1994-1273534-X
- Melvin Hochster and Craig Huneke, Indecomposable canonical modules and connectedness, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 197–208. MR 1266184, DOI 10.1090/conm/159/01509
- Melvin Hochster and Joel L. Roberts, The purity of the Frobenius and local cohomology, Advances in Math. 21 (1976), no. 2, 117–172. MR 417172, DOI 10.1016/0001-8708(76)90073-6
- Nobuo Hara and Shunsuke Takagi, On a generalization of test ideals, Nagoya Math. J. 175 (2004), 59–74. MR 2085311, DOI 10.1017/S0027763000008904
- Craig Huneke, Tight closure and its applications, CBMS Regional Conference Series in Mathematics, vol. 88, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. With an appendix by Melvin Hochster. MR 1377268, DOI 10.1016/0167-4889(95)00136-0
- Ernst Kunz, On Noetherian rings of characteristic $p$, Amer. J. Math. 98 (1976), no. 4, 999–1013. MR 432625, DOI 10.2307/2374038
- Gennady Lyubeznik and Karen E. Smith, On the commutation of the test ideal with localization and completion, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3149–3180. MR 1828602, DOI 10.1090/S0002-9947-01-02643-5
- Linquan Ma. Finiteness properties of local cohomology for $F$-pure local rings. Preprint, 2012.
- Linquan Ma, A sufficient condition for $F$-purity, J. Pure Appl. Algebra 218 (2014), no. 7, 1179–1183. MR 3168489, DOI 10.1016/j.jpaa.2013.11.011
- V. B. Mehta and A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), no. 1, 27–40. MR 799251, DOI 10.2307/1971368
- Karl Schwede, $F$-adjunction, Algebra Number Theory 3 (2009), no. 8, 907–950. MR 2587408, DOI 10.2140/ant.2009.3.907
- Karl Schwede, Centers of $F$-purity, Math. Z. 265 (2010), no. 3, 687–714. MR 2644316, DOI 10.1007/s00209-009-0536-5
- Anurag K. Singh, $F$-regularity does not deform, Amer. J. Math. 121 (1999), no. 4, 919–929. MR 1704481
- Karen Ellen Smith, Tight closure of parameter ideals and F-rationality, ProQuest LLC, Ann Arbor, MI, 1993. Thesis (Ph.D.)–University of Michigan. MR 2689065
- Karen E. Smith, $F$-rational rings have rational singularities, Amer. J. Math. 119 (1997), no. 1, 159–180. MR 1428062
- Karen E. Smith, Tight closure and vanishing theorems, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000) ICTP Lect. Notes, vol. 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001, pp. 149–213. MR 1919458
- Karl Schwede and Kevin Tucker, A survey of test ideals, Progress in commutative algebra 2, Walter de Gruyter, Berlin, 2012, pp. 39–99. MR 2932591
Bibliographic Information
- Alessandro De Stefani
- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903
- MR Author ID: 1053917
- Email: ad9fa@virginia.edu
- Luis Núñez-Betancourt
- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903
- MR Author ID: 949465
- Email: lcn8m@virginia.edu
- Received by editor(s): October 13, 2014
- Received by editor(s) in revised form: November 21, 2014
- Published electronically: June 9, 2015
- Communicated by: Irena Peeva
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 21-29
- MSC (2010): Primary 13A35, 13D45
- DOI: https://doi.org/10.1090/proc/12676
- MathSciNet review: 3415573