## A sufficient condition for strong $F$-regularity

HTML articles powered by AMS MathViewer

- by Alessandro De Stefani and Luis Núñez-Betancourt PDF
- Proc. Amer. Math. Soc.
**144**(2016), 21-29 Request permission

## Abstract:

Let $(R,\mathfrak {m},K)$ be an $F$-finite Noetherian local ring which has a canonical ideal $I \subsetneq R$. We prove that if $R$ is $S_2$ and $H^{d-1}_{\mathfrak {m}}(R/I)$ is a simple $R\{F\}$-module, then $R$ is a strongly $F$-regular ring. In particular, under these assumptions, $R$ is a Cohen-Macaulay normal domain.## References

- Ian M. Aberbach,
*Extension of weakly and strongly F-regular rings by flat maps*, J. Algebra**241**(2001), no. 2, 799–807. MR**1843326**, DOI 10.1006/jabr.2001.8785 - Ian M. Aberbach and Florian Enescu,
*Test ideals and base change problems in tight closure theory*, Trans. Amer. Math. Soc.**355**(2003), no. 2, 619–636. MR**1932717**, DOI 10.1090/S0002-9947-02-03162-8 - Yôichi Aoyama,
*Some basic results on canonical modules*, J. Math. Kyoto Univ.**23**(1983), no. 1, 85–94. MR**692731**, DOI 10.1215/kjm/1250521612 - Manuel Blickle and Gebhard Böckle,
*Cartier modules: finiteness results*, J. Reine Angew. Math.**661**(2011), 85–123. MR**2863904**, DOI 10.1515/CRELLE.2011.087 - Manuel Blickle and Karl Schwede,
*$p^{-1}$-linear maps in algebra and geometry*, Commutative algebra, Springer, New York, 2013, pp. 123–205. MR**3051373**, DOI 10.1007/978-1-4614-5292-8_{5} - Florian Enescu,
*Applications of pseudocanonical covers to tight closure problems*, J. Pure Appl. Algebra**178**(2003), no. 2, 159–167. MR**1952423**, DOI 10.1016/S0022-4049(02)00172-X - Richard Fedder,
*$F$-purity and rational singularity*, Trans. Amer. Math. Soc.**278**(1983), no. 2, 461–480. MR**701505**, DOI 10.1090/S0002-9947-1983-0701505-0 - Shiro Goto, Futoshi Hayasaka, and Shin-Ichiro Iai,
*The $a$-invariant and Gorensteinness of graded rings associated to filtrations of ideals in regular local rings*, Proc. Amer. Math. Soc.**131**(2003), no. 1, 87–94. MR**1929027**, DOI 10.1090/S0002-9939-02-06635-2 - Melvin Hochster and Craig Huneke,
*Tight closure and strong $F$-regularity*, Mém. Soc. Math. France (N.S.)**38**(1989), 119–133. Colloque en l’honneur de Pierre Samuel (Orsay, 1987). MR**1044348** - Melvin Hochster and Craig Huneke,
*Tight closure, invariant theory, and the Briançon-Skoda theorem*, J. Amer. Math. Soc.**3**(1990), no. 1, 31–116. MR**1017784**, DOI 10.1090/S0894-0347-1990-1017784-6 - Melvin Hochster and Craig Huneke,
*$F$-regularity, test elements, and smooth base change*, Trans. Amer. Math. Soc.**346**(1994), no. 1, 1–62. MR**1273534**, DOI 10.1090/S0002-9947-1994-1273534-X - Melvin Hochster and Craig Huneke,
*Indecomposable canonical modules and connectedness*, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 197–208. MR**1266184**, DOI 10.1090/conm/159/01509 - Melvin Hochster and Joel L. Roberts,
*The purity of the Frobenius and local cohomology*, Advances in Math.**21**(1976), no. 2, 117–172. MR**417172**, DOI 10.1016/0001-8708(76)90073-6 - Nobuo Hara and Shunsuke Takagi,
*On a generalization of test ideals*, Nagoya Math. J.**175**(2004), 59–74. MR**2085311**, DOI 10.1017/S0027763000008904 - Craig Huneke,
*Tight closure and its applications*, CBMS Regional Conference Series in Mathematics, vol. 88, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. With an appendix by Melvin Hochster. MR**1377268**, DOI 10.1016/0167-4889(95)00136-0 - Ernst Kunz,
*On Noetherian rings of characteristic $p$*, Amer. J. Math.**98**(1976), no. 4, 999–1013. MR**432625**, DOI 10.2307/2374038 - Gennady Lyubeznik and Karen E. Smith,
*On the commutation of the test ideal with localization and completion*, Trans. Amer. Math. Soc.**353**(2001), no. 8, 3149–3180. MR**1828602**, DOI 10.1090/S0002-9947-01-02643-5 - Linquan Ma. Finiteness properties of local cohomology for $F$-pure local rings.
*Preprint*, 2012. - Linquan Ma,
*A sufficient condition for $F$-purity*, J. Pure Appl. Algebra**218**(2014), no. 7, 1179–1183. MR**3168489**, DOI 10.1016/j.jpaa.2013.11.011 - V. B. Mehta and A. Ramanathan,
*Frobenius splitting and cohomology vanishing for Schubert varieties*, Ann. of Math. (2)**122**(1985), no. 1, 27–40. MR**799251**, DOI 10.2307/1971368 - Karl Schwede,
*$F$-adjunction*, Algebra Number Theory**3**(2009), no. 8, 907–950. MR**2587408**, DOI 10.2140/ant.2009.3.907 - Karl Schwede,
*Centers of $F$-purity*, Math. Z.**265**(2010), no. 3, 687–714. MR**2644316**, DOI 10.1007/s00209-009-0536-5 - Anurag K. Singh,
*$F$-regularity does not deform*, Amer. J. Math.**121**(1999), no. 4, 919–929. MR**1704481** - Karen Ellen Smith,
*Tight closure of parameter ideals and F-rationality*, ProQuest LLC, Ann Arbor, MI, 1993. Thesis (Ph.D.)–University of Michigan. MR**2689065** - Karen E. Smith,
*$F$-rational rings have rational singularities*, Amer. J. Math.**119**(1997), no. 1, 159–180. MR**1428062** - Karen E. Smith,
*Tight closure and vanishing theorems*, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000) ICTP Lect. Notes, vol. 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001, pp. 149–213. MR**1919458** - Karl Schwede and Kevin Tucker,
*A survey of test ideals*, Progress in commutative algebra 2, Walter de Gruyter, Berlin, 2012, pp. 39–99. MR**2932591**

## Additional Information

**Alessandro De Stefani**- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903
- MR Author ID: 1053917
- Email: ad9fa@virginia.edu
**Luis Núñez-Betancourt**- Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903
- MR Author ID: 949465
- Email: lcn8m@virginia.edu
- Received by editor(s): October 13, 2014
- Received by editor(s) in revised form: November 21, 2014
- Published electronically: June 9, 2015
- Communicated by: Irena Peeva
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**144**(2016), 21-29 - MSC (2010): Primary 13A35, 13D45
- DOI: https://doi.org/10.1090/proc/12676
- MathSciNet review: 3415573