Positivity of the renormalized volume of almost-Fuchsian hyperbolic $3$-manifolds
HTML articles powered by AMS MathViewer
- by Corina Ciobotaru and Sergiu Moroianu
- Proc. Amer. Math. Soc. 144 (2016), 151-159
- DOI: https://doi.org/10.1090/proc/12682
- Published electronically: June 9, 2015
- PDF | Request permission
Abstract:
We prove that the renormalized volume of almost-Fuchsian hyperbolic $3$-manifolds is non-negative, with equality only for Fuchsian manifolds.References
- Pierre Albin, Renormalizing curvature integrals on Poincaré-Einstein manifolds, Adv. Math. 221 (2009), no. 1, 140–169. MR 2509323, DOI 10.1016/j.aim.2008.12.002
- Jeffrey F. Brock, The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores, J. Amer. Math. Soc. 16 (2003), no. 3, 495–535. MR 1969203, DOI 10.1090/S0894-0347-03-00424-7
- Colin Guillarmou and Sergiu Moroianu, Chern-Simons line bundle on Teichmüller space, Geom. Topol. 18 (2014), no. 1, 327–377. MR 3159164, DOI 10.2140/gt.2014.18.327
- C. Guillarmou, S. Moroianu, J.-M. Schlenker, The renormalized volume and uniformization of conformal structures, preprint arXiv:1211.6705.
- M. Henningson and K. Skenderis, The holographic Weyl anomaly, J. High Energy Phys. 7 (1998), Paper 23, 12. MR 1644988, DOI 10.1088/1126-6708/1998/07/023
- Zheng Huang and Biao Wang, On almost-Fuchsian manifolds, Trans. Amer. Math. Soc. 365 (2013), no. 9, 4679–4698. MR 3066768, DOI 10.1090/S0002-9947-2013-05749-2
- Kirill Krasnov, Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000), no. 4, 929–979. MR 1867510, DOI 10.4310/ATMP.2000.v4.n4.a5
- Kirill Krasnov and Jean-Marc Schlenker, On the renormalized volume of hyperbolic 3-manifolds, Comm. Math. Phys. 279 (2008), no. 3, 637–668. MR 2386723, DOI 10.1007/s00220-008-0423-7
- Jean-Marc Schlenker, The renormalized volume and the volume of the convex core of quasifuchsian manifolds, Math. Res. Lett. 20 (2013), no. 4, 773–786. MR 3188032, DOI 10.4310/MRL.2013.v20.n4.a12
- Leon A. Takhtajan and Lee-Peng Teo, Liouville action and Weil-Petersson metric on deformation spaces, global Kleinian reciprocity and holography, Comm. Math. Phys. 239 (2003), no. 1-2, 183–240. MR 1997440, DOI 10.1007/s00220-003-0878-5
- P. G. Zograf and L. A. Takhtadzhyan, On the uniformization of Riemann surfaces and on the Weil-Petersson metric on the Teichmüller and Schottky spaces, Mat. Sb. (N.S.) 132(174) (1987), no. 3, 304–321, 444 (Russian); English transl., Math. USSR-Sb. 60 (1988), no. 2, 297–313. MR 889594, DOI 10.1070/SM1988v060n02ABEH003170
- Karen K. Uhlenbeck, Closed minimal surfaces in hyperbolic $3$-manifolds, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 147–168. MR 795233
Bibliographic Information
- Corina Ciobotaru
- Affiliation: Section de Mathématiques, Université de Genève, 2-4 rue du Lièvre, CP 64, 1211 Genève 4, Switzerland
- Email: corina.ciobotaru@unige.ch
- Sergiu Moroianu
- Affiliation: Institutul de Matematică al Academiei Române, P.O. Box 1-764, RO-014700 Bucharest, Romania
- Email: moroianu@alum.mit.edu
- Received by editor(s): September 22, 2014
- Received by editor(s) in revised form: November 25, 2014
- Published electronically: June 9, 2015
- Additional Notes: The first author was supported by the FRIA
The second author was partially supported by the CNCS project PN-II-RU-TE-2011-3-0053 - Communicated by: Michael Wolf
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 151-159
- MSC (2010): Primary 30F60
- DOI: https://doi.org/10.1090/proc/12682
- MathSciNet review: 3415585