On gradient Ricci solitons with constant scalar curvature
HTML articles powered by AMS MathViewer
- by Manuel Fernández-López and Eduardo García-Río
- Proc. Amer. Math. Soc. 144 (2016), 369-378
- DOI: https://doi.org/10.1090/proc/12693
- Published electronically: June 26, 2015
- PDF | Request permission
Abstract:
We use the theory of isoparametric functions to investigate gradient Ricci solitons with constant scalar curvature. We show rigidity of gradient Ricci solitons with constant scalar curvature under some conditions on the Ricci tensor, which are all satisfied if the manifold is curvature homogeneous. This leads to a complete description of four- and six-dimensional Kähler gradient Ricci solitons with constant scalar curvature.References
- Eric Boeckx, Oldřich Kowalski, and Lieven Vanhecke, Riemannian manifolds of conullity two, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. MR 1462887, DOI 10.1142/9789812819970
- J. Bolton, Transnormal systems, Quart. J. Math. Oxford Ser. (2) 24 (1973), 385–395. MR 336645, DOI 10.1093/qmath/24.1.385
- Huai-Dong Cao, Recent progress on Ricci solitons, Recent advances in geometric analysis, Adv. Lect. Math. (ALM), vol. 11, Int. Press, Somerville, MA, 2010, pp. 1–38. MR 2648937
- Huai-Dong Cao, Bing-Long Chen, and Xi-Ping Zhu, Recent developments on Hamilton’s Ricci flow, Surveys in differential geometry. Vol. XII. Geometric flows, Surv. Differ. Geom., vol. 12, Int. Press, Somerville, MA, 2008, pp. 47–112. MR 2488948, DOI 10.4310/SDG.2007.v12.n1.a3
- Huai-Dong Cao and Detang Zhou, On complete gradient shrinking Ricci solitons, J. Differential Geom. 85 (2010), no. 2, 175–185. MR 2732975
- Qing-Ming Cheng, Compact locally conformally flat Riemannian manifolds, Bull. London Math. Soc. 33 (2001), no. 4, 459–465. MR 1832558, DOI 10.1017/S0024609301008074
- Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: techniques and applications. Part I, Mathematical Surveys and Monographs, vol. 135, American Mathematical Society, Providence, RI, 2007. Geometric aspects. MR 2302600, DOI 10.1090/surv/135
- Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci flow, Graduate Studies in Mathematics, vol. 77, American Mathematical Society, Providence, RI; Science Press Beijing, New York, 2006. MR 2274812, DOI 10.1090/gsm/077
- Manolo Eminenti, Gabriele La Nave, and Carlo Mantegazza, Ricci solitons: the equation point of view, Manuscripta Math. 127 (2008), no. 3, 345–367. MR 2448435, DOI 10.1007/s00229-008-0210-y
- Yunhee Euh, JeongHyeong Park, and Kouei Sekigawa, A curvature identity on a 4-dimensional Riemannian manifold, Results Math. 63 (2013), no. 1-2, 107–114. MR 3009674, DOI 10.1007/s00025-011-0164-3
- Manuel Fernández-López and Eduardo García-Río, Rigidity of shrinking Ricci solitons, Math. Z. 269 (2011), no. 1-2, 461–466. MR 2836079, DOI 10.1007/s00209-010-0745-y
- Jianquan Ge and Zizhou Tang, Geometry of isoparametric hypersurfaces in Riemannian manifolds, Asian J. Math. 18 (2014), no. 1, 117–125. MR 3215342, DOI 10.4310/AJM.2014.v18.n1.a6
- Reiko Miyaoka, Transnormal functions on a Riemannian manifold, Differential Geom. Appl. 31 (2013), no. 1, 130–139. MR 3010083, DOI 10.1016/j.difgeo.2012.10.005
- Ovidiu Munteanu and Natasa Sesum, On gradient Ricci solitons, J. Geom. Anal. 23 (2013), no. 2, 539–561. MR 3023848, DOI 10.1007/s12220-011-9252-6
- Peter Petersen and William Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 241 (2009), no. 2, 329–345. MR 2507581, DOI 10.2140/pjm.2009.241.329
- Peter Petersen and William Wylie, On gradient Ricci solitons with symmetry, Proc. Amer. Math. Soc. 137 (2009), no. 6, 2085–2092. MR 2480290, DOI 10.1090/S0002-9939-09-09723-8
- Peter Petersen and William Wylie, On the classification of gradient Ricci solitons, Geom. Topol. 14 (2010), no. 4, 2277–2300. MR 2740647, DOI 10.2140/gt.2010.14.2277
- Qi Ming Wang, Isoparametric functions on Riemannian manifolds. I, Math. Ann. 277 (1987), no. 4, 639–646. MR 901710, DOI 10.1007/BF01457863
- J.-Y. Wu, P. Wu and W. Wylie, Gradient shrinking Ricci solitons of half harmonic Weyl curvature, to appear.
- William Wylie, Complete shrinking Ricci solitons have finite fundamental group, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1803–1806. MR 2373611, DOI 10.1090/S0002-9939-07-09174-5
Bibliographic Information
- Manuel Fernández-López
- Affiliation: IES María Sarmiento, Consellería de Educación, Xunta de Galicia, Lugo, Spain
- MR Author ID: 685993
- Email: manufl@edu.xunta.es
- Eduardo García-Río
- Affiliation: Faculty of Mathematics, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- MR Author ID: 291968
- ORCID: 0000-0003-1195-1664
- Email: eduardo.garcia.rio@usc.es
- Received by editor(s): September 17, 2014
- Received by editor(s) in revised form: December 12, 2014
- Published electronically: June 26, 2015
- Additional Notes: The authors were supported by projects GRC2013-045 and MTM2013-41335-P with FEDER funds (Spain)
- Communicated by: Guofang Wei
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 369-378
- MSC (2010): Primary 53C25, 53C20, 53C44
- DOI: https://doi.org/10.1090/proc/12693
- MathSciNet review: 3415603