Fibers of partial totalizations of a pointed cosimplicial space
HTML articles powered by AMS MathViewer
- by Akhil Mathew and Vesna Stojanoska
- Proc. Amer. Math. Soc. 144 (2016), 445-458
- DOI: https://doi.org/10.1090/proc/12699
- Published electronically: June 5, 2015
- PDF | Request permission
Abstract:
Let $X^\bullet$ be a cosimplicial object in a pointed $\infty$-category. We show that the fiber of $\mathrm {Tot}_m(X^\bullet ) \to \mathrm {Tot}_n(X^\bullet )$ depends only on the pointed cosimplicial object $\Omega ^k X^\bullet$ and is in particular a $k$-fold loop object, where $k = 2n - m+2$. The approach is explicit obstruction theory with quasicategories. We also discuss generalizations to other types of homotopy limits and colimits.References
- Gregory Z. Arone, William G. Dwyer, and Kathryn Lesh, Loop structures in Taylor towers, Algebr. Geom. Topol. 8 (2008), no. 1, 173–210. MR 2377281, DOI 10.2140/agt.2008.8.173
- Julia E. Bergner, A model category structure on the category of simplicial categories, Trans. Amer. Math. Soc. 359 (2007), no. 5, 2043–2058. MR 2276611, DOI 10.1090/S0002-9947-06-03987-0
- Anders Björner, Michelle L. Wachs, and Volkmar Welker, Poset fiber theorems, Trans. Amer. Math. Soc. 357 (2005), no. 5, 1877–1899. MR 2115080, DOI 10.1090/S0002-9947-04-03496-8
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
- George Cooke, Replacing homotopy actions by topological actions, Trans. Amer. Math. Soc. 237 (1978), 391–406. MR 461544, DOI 10.1090/S0002-9947-1978-0461544-2
- Daniel Dugger, A primer on homotopy colimits, Preprint available at http://math.uoregon.edu/~ddugger/hocolim.pdf.
- Daniel Dugger and Daniel C. Isaksen, Topological hypercovers and $\Bbb A^1$-realizations, Math. Z. 246 (2004), no. 4, 667–689. MR 2045835, DOI 10.1007/s00209-003-0607-y
- W. G. Dwyer and D. M. Kan, An obstruction theory for diagrams of simplicial sets, Nederl. Akad. Wetensch. Indag. Math. 46 (1984), no. 2, 139–146. MR 749527
- W. G. Dwyer and D. M. Kan, Realizing diagrams in the homotopy category by means of diagrams of simplicial sets, Proc. Amer. Math. Soc. 91 (1984), no. 3, 456–460. MR 744648, DOI 10.1090/S0002-9939-1984-0744648-4
- W. G. Dwyer, D. M. Kan, and J. H. Smith, An obstruction theory for simplicial categories, Nederl. Akad. Wetensch. Indag. Math. 48 (1986), no. 2, 153–161. MR 849715
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- Jacob Lurie, Higher algebra, Preprint available at http://www.math.harvard.edu/~lurie, 2012.
- Akhil Mathew and Vesna Stojanoska, The Picard group of topological modular forms via descent theory, Preprint available at http://arxiv.org/abs/1409.7702, 2014.
- Daniel Quillen, Homotopy properties of the poset of nontrivial $p$-subgroups of a group, Adv. in Math. 28 (1978), no. 2, 101–128. MR 493916, DOI 10.1016/0001-8708(78)90058-0
- Emily Riehl, Categorical homotopy theory, New Mathematical Monographs, vol. 24, Cambridge University Press, Cambridge, 2014. MR 3221774, DOI 10.1017/CBO9781107261457
Bibliographic Information
- Akhil Mathew
- Affiliation: Department of Mathematics, University of California, Berkeley, California, 94720
- MR Author ID: 891016
- Email: amathew@math.berkeley.edu
- Vesna Stojanoska
- Affiliation: Max Planck Institute for Mathematics, Bonn, Germany, 53111
- MR Author ID: 857759
- Email: vstojanoska@mpim-bonn.mpg.de
- Received by editor(s): August 12, 2014
- Received by editor(s) in revised form: December 10, 2014, and December 18, 2014
- Published electronically: June 5, 2015
- Additional Notes: The first author was partially supported by the NSF Graduate Research Fellowship under grant DGE-110640
The second author was partially supported by NSF grant DMS-1307390 - Communicated by: Michael A. Mandell
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 445-458
- MSC (2010): Primary 55U35, 55U40
- DOI: https://doi.org/10.1090/proc/12699
- MathSciNet review: 3415610