Cyclic group actions and embedded spheres in 4-manifolds
HTML articles powered by AMS MathViewer
- by M. J. D. Hamilton
- Proc. Amer. Math. Soc. 144 (2016), 411-422
- DOI: https://doi.org/10.1090/proc/12707
- Published electronically: July 24, 2015
- PDF | Request permission
Abstract:
In this note we derive an upper bound on the number of 2-spheres in the fixed point set of a smooth and homologically trivial cyclic group action of prime order on a simply-connected 4-manifold. This improves the a priori bound which is given by one half of the Euler characteristic of the 4-manifold. The result also shows that in some cases the 4-manifold does not admit such actions of a certain order at all or that any such action has to be pseudofree.References
- Anar Akhmedov, Small exotic 4-manifolds, Algebr. Geom. Topol. 8 (2008), no. 3, 1781–1794. MR 2448872, DOI 10.2140/agt.2008.8.1781
- Anar Akhmedov and B. Doug Park, Exotic smooth structures on small 4-manifolds with odd signatures, Invent. Math. 181 (2010), no. 3, 577–603. MR 2660453, DOI 10.1007/s00222-010-0254-y
- M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. II. Applications, Ann. of Math. (2) 88 (1968), 451–491. MR 232406, DOI 10.2307/1970721
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546–604. MR 236952, DOI 10.2307/1970717
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Dan Burns Jr. and Michael Rapoport, On the Torelli problem for kählerian $K-3$ surfaces, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 2, 235–273. MR 447635
- Weimin Chen and Slawomir Kwasik, Symplectic symmetries of 4-manifolds, Topology 46 (2007), no. 2, 103–128. MR 2313067, DOI 10.1016/j.top.2006.12.003
- S. K. Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983), no. 2, 279–315. MR 710056
- Allan L. Edmonds, Construction of group actions on four-manifolds, Trans. Amer. Math. Soc. 299 (1987), no. 1, 155–170. MR 869405, DOI 10.1090/S0002-9947-1987-0869405-7
- Allan L. Edmonds, Involutions on odd four-manifolds, Topology Appl. 30 (1988), no. 1, 43–49. MR 964061, DOI 10.1016/0166-8641(88)90079-X
- Allan L. Edmonds, Aspects of group actions on four-manifolds, Topology Appl. 31 (1989), no. 2, 109–124. MR 994404, DOI 10.1016/0166-8641(89)90075-8
- Robert E. Gompf and András I. Stipsicz, $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR 1707327, DOI 10.1090/gsm/020
- F. Hirzebruch, The signature theorem: reminiscences and recreation, Prospects in mathematics (Proc. Sympos., Princeton Univ., Princeton, N.J., 1970) Ann. of Math. Studies, No. 70, Princeton Univ. Press, Princeton, N.J., 1971, pp. 3–31. MR 0368023
- Michael Klemm, Finite group actions on smooth 4-manifolds with indefinite intersection form, ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)–McMaster University (Canada). MR 2695049
- D. Kotschick, Orientations and geometrisations of compact complex surfaces, Bull. London Math. Soc. 29 (1997), no. 2, 145–149. MR 1425990, DOI 10.1112/S0024609396002287
- P. B. Kronheimer and T. S. Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994), no. 6, 797–808. MR 1306022, DOI 10.4310/MRL.1994.v1.n6.a14
- Sławomir Kwasik and Reinhard Schultz, Homological properties of periodic homeomorphisms of $4$-manifolds, Duke Math. J. 58 (1989), no. 1, 241–250. MR 1016421, DOI 10.1215/S0012-7094-89-05812-2
- Hongxia Li, Cyclic group actions on elliptic surfaces $E(2n)$, J. Math. Comput. Sci. 2 (2012), no. 6, 1759–1765. MR 3004191
- T. J. Li and A. Liu, Symplectic structure on ruled surfaces and a generalized adjunction formula, Math. Res. Lett. 2 (1995), no. 4, 453–471. MR 1355707, DOI 10.4310/MRL.1995.v2.n4.a6
- Ai-Ko Liu, Some new applications of general wall crossing formula, Gompf’s conjecture and its applications, Math. Res. Lett. 3 (1996), no. 5, 569–585. MR 1418572, DOI 10.4310/MRL.1996.v3.n5.a1
- Takao Matumoto, Homologically trivial smooth involutions on $K3$ surfaces, Aspects of low-dimensional manifolds, Adv. Stud. Pure Math., vol. 20, Kinokuniya, Tokyo, 1992, pp. 365–376. MR 1208316, DOI 10.2969/aspm/02010365
- M. McCooey, Symmetry groups of non-simply connected four-manifolds, preprint: arXiv:0707.3835v2.
- C. A. M. Peters, On automorphisms of compact Kähler surfaces, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 249–267. MR 605346
- Ulf Persson, Chris Peters, and Gang Xiao, Geography of spin surfaces, Topology 35 (1996), no. 4, 845–862. MR 1404912, DOI 10.1016/0040-9383(95)00046-1
- Daniel Ruberman, Involutions on spin $4$-manifolds, Proc. Amer. Math. Soc. 123 (1995), no. 2, 593–596. MR 1231042, DOI 10.1090/S0002-9939-1995-1231042-2
- P. A. Smith, Transformations of finite period. IV. Dimensional parity, Ann. of Math. (2) 46 (1945), 357–364. MR 13304, DOI 10.2307/1969155
- Zoltán Szabó, Exotic $4$-manifolds with $b^+_2=1$, Math. Res. Lett. 3 (1996), no. 6, 731–741. MR 1426531, DOI 10.4310/MRL.1996.v3.n6.a2
- C. T. C. Wall, Surgery on compact manifolds, 2nd ed., Mathematical Surveys and Monographs, vol. 69, American Mathematical Society, Providence, RI, 1999. Edited and with a foreword by A. A. Ranicki. MR 1687388, DOI 10.1090/surv/069
- Edward Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no. 6, 769–796. MR 1306021, DOI 10.4310/MRL.1994.v1.n6.a13
Bibliographic Information
- M. J. D. Hamilton
- Affiliation: Institute for Geometry and Topology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Email: mark.hamilton@math.lmu.de
- Received by editor(s): July 29, 2014
- Received by editor(s) in revised form: December 4, 2014
- Published electronically: July 24, 2015
- Communicated by: Martin Scharlemann
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 411-422
- MSC (2010): Primary 57M60, 57S17, 57N13; Secondary 57R57
- DOI: https://doi.org/10.1090/proc/12707
- MathSciNet review: 3415607