Estimates for Fourier sums and eigenvalues of integral operators via multipliers on the sphere
HTML articles powered by AMS MathViewer
- by T. Jordão and V. A. Menegatto
- Proc. Amer. Math. Soc. 144 (2016), 269-283
- DOI: https://doi.org/10.1090/proc12716
- Published electronically: July 8, 2015
- PDF | Request permission
Abstract:
We provide estimates for weighted Fourier sums of integrable functions defined on the sphere when the weights originate from a multiplier operator acting on the space where the function belongs. That implies refined estimates for weighted Fourier sums of integrable kernels on the sphere that satisfy an abstract Hölder condition based on a parameterized family of multiplier operators defining an approximate identity. This general estimation approach includes an important class of multiplier operators, namely, that defined by convolutions with zonal measures. The estimates are used to obtain decay rates for the eigenvalues of positive integral operators on $L^2(S^m)$ and generated by a kernel satisfying the Hölder condition based on multiplier operators on $L^2(S^m)$.References
- E. Belinsky, F. Dai, and Z. Ditzian, Multivariate approximating averages, J. Approx. Theory 125 (2003), no. 1, 85–105. MR 2016842, DOI 10.1016/j.jat.2003.09.005
- H. Berens, P. L. Butzer, and S. Pawelke, Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten, Publ. Res. Inst. Math. Sci. Ser. A 4 (1968/1969), 201–268 (German). MR 0243266, DOI 10.2977/prims/1195194875
- William O. Bray, Growth and integrability of Fourier transforms on Euclidean space, J. Fourier Anal. Appl. 20 (2014), no. 6, 1234–1256. MR 3278867, DOI 10.1007/s00041-014-9354-1
- F. Dai and Z. Ditzian, Combinations of multivariate averages, J. Approx. Theory 131 (2004), no. 2, 268–283. MR 2106541, DOI 10.1016/j.jat.2004.10.003
- Feng Dai and Yuan Xu, Approximation theory and harmonic analysis on spheres and balls, Springer Monographs in Mathematics, Springer, New York, 2013. MR 3060033, DOI 10.1007/978-1-4614-6660-4
- Z. Ditzian, Relating smoothness to expressions involving Fourier coefficients or to a Fourier transform, J. Approx. Theory 164 (2012), no. 10, 1369–1389. MR 2961186, DOI 10.1016/j.jat.2012.05.004
- Z. Ditzian and K. Runovskii, Averages on caps of $S^{d-1}$, J. Math. Anal. Appl. 248 (2000), no. 1, 260–274. MR 1772596, DOI 10.1006/jmaa.2000.6897
- Charles F. Dunkl, Operators and harmonic analysis on the sphere, Trans. Amer. Math. Soc. 125 (1966), 250–263. MR 203371, DOI 10.1090/S0002-9947-1966-0203371-9
- Alessandro Figà-Talamanca and Garth I. Gaudry, Multipliers and sets of uniqueness of $L^{p}$, Michigan Math. J. 17 (1970), 179–191. MR 259499
- Gerald B. Folland, Real analysis, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999. Modern techniques and their applications; A Wiley-Interscience Publication. MR 1681462
- T. Jordão, V. A. Menegatto, and Xingping Sun, Eigenvalue sequences of positive integral operators and moduli of smoothness, Approximation theory XIV: San Antonio 2013, Springer Proc. Math. Stat., vol. 83, Springer, Cham, 2014, pp. 239–254. MR 3218579, DOI 10.1007/978-3-319-06404-8_{1}3
- T. Jordão, V. A. Menegatto, and Xingping Sun, Decay rates for eigenvalues of positive operators on spheres by fractional modulus of smoothness. Approximation theory XIV: San Antonio 2013, Springer Proc. Math., to appear.
- Thomas Kühn, Eigenvalues of integral operators with smooth positive definite kernels, Arch. Math. (Basel) 49 (1987), no. 6, 525–534. MR 921120, DOI 10.1007/BF01194301
- V. A. Menegatto, Approximation by spherical convolution, Numer. Funct. Anal. Optim. 18 (1997), no. 9-10, 995–1012. MR 1485991, DOI 10.1080/01630569708816805
- S. S. Platonov, On some problems in the theory of the approximation of functions on compact homogeneous manifolds, Mat. Sb. 200 (2009), no. 6, 67–108 (Russian, with Russian summary); English transl., Sb. Math. 200 (2009), no. 5-6, 845–885. MR 2553074, DOI 10.1070/SM2009v200n06ABEH004021
- J. F. Price, Some strict inclusions between spaces of $L^{p}$-multipliers, Trans. Amer. Math. Soc. 152 (1970), 321–330. MR 282210, DOI 10.1090/S0002-9947-1970-0282210-5
- Marc A. Rieffel, Multipliers and tensor products of $L^{p}$-spaces of locally compact groups, Studia Math. 33 (1969), 71–82. MR 244764, DOI 10.4064/sm-33-1-71-82
- Walter Rudin, Uniqueness theory for Laplace series, Trans. Amer. Math. Soc. 68 (1950), 287–303. MR 33368, DOI 10.1090/S0002-9947-1950-0033368-1
- Stefan G. Samko and Boris G. Vakulov, On equivalent norms in fractional order function spaces of continuous functions on the unit sphere, Fract. Calc. Appl. Anal. 3 (2000), no. 4, 401–433. MR 1806312
- R. T. Seeley, Spherical harmonics, Amer. Math. Monthly 73 (1966), no. 4, 115–121. MR 201695, DOI 10.2307/2313760
Bibliographic Information
- T. Jordão
- Affiliation: Departamento de Matemática, ICMC-USP - São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil
- MR Author ID: 896956
- Email: thsjordao@gmail.com
- V. A. Menegatto
- Affiliation: Departamento de Matemática, ICMC-USP - São Carlos, Caixa Postal 668, 13560-970 São Carlos SP, Brazil
- MR Author ID: 358330
- ORCID: 0000-0002-4213-8759
- Email: menegatt@icmc.usp.br
- Received by editor(s): May 29, 2014
- Received by editor(s) in revised form: December 18, 2014
- Published electronically: July 8, 2015
- Additional Notes: The authors were partially supported by FAPESP, grants $\#$ 2011/21300-7 and $\#$ 2014/06209-1
- Communicated by: Walter Van Assche
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 269-283
- MSC (2010): Primary 33C65, 41A17, 41A36, 41A60, 42A16; Secondary 45M05, 45C05, 42B10, 42A82
- DOI: https://doi.org/10.1090/proc12716
- MathSciNet review: 3415595