Parabolicity of the regular locus of complex varieties
HTML articles powered by AMS MathViewer
- by J. Ruppenthal
- Proc. Amer. Math. Soc. 144 (2016), 225-233
- DOI: https://doi.org/10.1090/proc12718
- Published electronically: June 24, 2015
- PDF | Request permission
Abstract:
The purpose of this note is to show that the regular locus of a complex variety is locally parabolic at the singular set. This yields that the regular locus of a compact complex variety, e.g., of a projective variety, is parabolic. We give also an application to the $L^2$-theory for the $\overline {\partial }$-operator on singular spaces.References
- H. W. Alt, Lineare Funktionalanalysis, Springer-Verlag, Berlin, 1992.
- S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333–354. MR 385749, DOI 10.1002/cpa.3160280303
- Moses Glasner, Stokes’ theorem and parabolicity of Riemannian manifolds, Proc. Amer. Math. Soc. 87 (1983), no. 1, 70–72. MR 677234, DOI 10.1090/S0002-9939-1983-0677234-4
- Moses Glasner and Richard Katz, Function-theoretic degeneracy criteria for Riemannian manifolds, Pacific J. Math. 28 (1969), 351–356. MR 246229
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- A. A. Grigor′yan, The existence of positive fundamental solutions of the Laplace equation on Riemannian manifolds, Mat. Sb. (N.S.) 128(170) (1985), no. 3, 354–363, 446 (Russian). MR 815269
- Alexander Grigor′yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 2, 135–249. MR 1659871, DOI 10.1090/S0273-0979-99-00776-4
- Alexander Grigor′yan, Isoperimetric inequalities and capacities on Riemannian manifolds, The Maz′ya anniversary collection, Vol. 1 (Rostock, 1998) Oper. Theory Adv. Appl., vol. 109, Birkhäuser, Basel, 1999, pp. 139–153. MR 1747869
- Alexander Grigor’yan and Jun Masamune, Parabolicity and stochastic completeness of manifolds in terms of the Green formula, J. Math. Pures Appl. (9) 100 (2013), no. 5, 607–632 (English, with English and French summaries). MR 3115827, DOI 10.1016/j.matpur.2013.01.015
- Nils Øvrelid and Sophia Vassiliadou, $L^2$-$\overline \partial$-cohomology groups of some singular complex spaces, Invent. Math. 192 (2013), no. 2, 413–458. MR 3044127, DOI 10.1007/s00222-012-0414-3
- William L. Pardon and Mark A. Stern, $L^2\text {–}\overline \partial$-cohomology of complex projective varieties, J. Amer. Math. Soc. 4 (1991), no. 3, 603–621. MR 1102582, DOI 10.1090/S0894-0347-1991-1102582-6
- J. Ruppenthal, $L^2$-theory for the $\overline \partial$-operator on compact complex spaces, Duke Math. J. 163 (2014), no. 15, 2887–2934. MR 3285860, DOI 10.1215/0012794-2838545
- J. Ruppenthal, Serre duality and $L^2$-vanishing theorems on singular spaces, Preprint 2014, arXiv:1401.4563, submitted.
- N. Sibony, Quelques problèmes de prolongement de courants en analyse complexe, Duke Math. J. 52 (1985), no. 1, 157–197.
Bibliographic Information
- J. Ruppenthal
- Affiliation: Department of Mathematics, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
- MR Author ID: 848480
- Email: ruppenthal@uni-wuppertal.de
- Received by editor(s): October 22, 2014
- Received by editor(s) in revised form: November 23, 2014, and December 4, 2014
- Published electronically: June 24, 2015
- Communicated by: Franc Forstneric
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 225-233
- MSC (2010): Primary 31C12, 53C20, 32C18, 32C25, 32W05
- DOI: https://doi.org/10.1090/proc12718
- MathSciNet review: 3415591