Self-dual representations of $\operatorname {SL}(n,F)$
HTML articles powered by AMS MathViewer
- by Kumar Balasubramanian
- Proc. Amer. Math. Soc. 144 (2016), 435-444
- DOI: https://doi.org/10.1090/proc12739
- Published electronically: May 28, 2015
- PDF | Request permission
Abstract:
Let $F$ be a non-Archimedean local field of characteristic $0$ and $G=\operatorname {SL}(n,F)$. Let $(\pi ,W)$ be an irreducible smooth self-dual representation $G$. The space $W$ of $\pi$ carries a non-degenerate $G$-invariant bilinear form $( , )$ which is unique up to scaling. The form $( , )$ is easily seen to be symmetric or skew-symmetric and we set $\varepsilon ({\pi })=\pm 1$ accordingly. In this article, we show that $\varepsilon {(\pi )}=1$ when $\pi$ is an Iwahori spherical representation of $G$.References
- Kumar Balasubramanian, Self-dual representations with vectors fixed under an Iwahori subgroup, J. Algebra 394 (2013), 207–220. MR 3092718, DOI 10.1016/j.jalgebra.2013.07.024
- Armand Borel, Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup, Invent. Math. 35 (1976), 233–259. MR 444849, DOI 10.1007/BF01390139
- Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1995. Translated from the German manuscript; Corrected reprint of the 1985 translation. MR 1410059
- W. Casselman, The unramified principal series of ${\mathfrak {p}}$-adic groups. I. The spherical function, Compositio Math. 40 (1980), no. 3, 387–406. MR 571057
- R. Gow, Real representations of the finite orthogonal and symplectic groups of odd characteristic, J. Algebra 96 (1985), no. 1, 249–274. MR 808851, DOI 10.1016/0021-8693(85)90049-3
- Hervé Jacquet, A correction to Conducteur des représentations du groupe linéaire [MR620708], Pacific J. Math. 260 (2012), no. 2, 515–525. MR 3001803, DOI 10.2140/pjm.2012.260.515
- Hervé Jacquet, Ilja Piatetski-Shapiro, and Joseph Shalika, Conducteur des représentations génériques du groupe linéaire, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 13, 611–616 (French, with English summary). MR 625357
- Dipendra Prasad, On the self-dual representations of finite groups of Lie type, J. Algebra 210 (1998), no. 1, 298–310. MR 1656426, DOI 10.1006/jabr.1998.7550
- Dipendra Prasad, On the self-dual representations of a $p$-adic group, Internat. Math. Res. Notices 8 (1999), 443–452. MR 1687319, DOI 10.1155/S1073792899000227
- Dipendra Prasad and Dinakar Ramakrishnan, Self-dual representations of division algebras and Weil groups: a contrast, Amer. J. Math. 134 (2012), no. 3, 749–767. MR 2931222, DOI 10.1353/ajm.2012.0017
- Alan Roche and Steven Spallone, Twisted signs for $p$-adic linear groups, preprint.
- F. Rodier, Modèle de Whittaker et caractères de représentations, Non-commutative harmonic analysis (Actes Colloq., Marseille-Luminy, 1974), Lecture Notes in Math., Vol. 466, Springer, Berlin, 1975, pp. 151–171 (French). MR 0393355
- Marko Tadić, Notes on representations of non-Archimedean $\textrm {SL}(n)$, Pacific J. Math. 152 (1992), no. 2, 375–396. MR 1141803
Bibliographic Information
- Kumar Balasubramanian
- Affiliation: Department of Mathematics, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India
- MR Author ID: 1034435
- Email: bkumar@iiserb.ac.in
- Received by editor(s): March 24, 2014
- Received by editor(s) in revised form: December 8, 2014
- Published electronically: May 28, 2015
- Communicated by: Pham Huu Tiep
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 435-444
- MSC (2010): Primary 22-XX
- DOI: https://doi.org/10.1090/proc12739
- MathSciNet review: 3415609