## Locally conformally Kähler metrics obtained from pseudoconvex shells

HTML articles powered by AMS MathViewer

- by Liviu Ornea and Misha Verbitsky PDF
- Proc. Amer. Math. Soc.
**144**(2016), 325-335 Request permission

## Abstract:

A locally conformally Kähler (LCK) manifold is a complex manifold $M$ admitting a Kähler covering $\tilde {M}$, such that its monodromy acts on this covering by homotheties. A compact LCK manifold is called**LCK with potential**if its covering admits an automorphic Kähler potential. It is known that in this case $\tilde {M}$ is an algebraic cone, that is, the set of all non-zero vectors in the total space of an anti-ample line bundle over a projective orbifold. We start with an algebraic cone $C$, and show that the set of Kähler metrics with potential which could arise from an LCK structure is in bijective correspondence with the set of pseudoconvex shells, that is, pseudoconvex hypersurfaces in $C$ meeting each orbit of the associated $\mathbb {R}^{>0}$-action exactly once and transversally. This is used to produce explicit LCK and Vaisman metrics on Hopf manifolds, generalizing earlier work by Gauduchon-Ornea, Belgun and Kamishima-Ornea.

## References

- Florin Alexandru Belgun,
*On the metric structure of non-Kähler complex surfaces*, Math. Ann.**317**(2000), no. 1, 1–40. MR**1760667**, DOI 10.1007/s002080050357 - Charles P. Boyer and Krzysztof Galicki,
*Sasakian geometry*, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008. MR**2382957** - E. Brieskorn and A. van de Ven,
*Some complex structures on products of homotopy spheres*, Topology**7**(1968), 389–393. MR**233360**, DOI 10.1016/0040-9383(68)90014-1 - Sorin Dragomir and Liviu Ornea,
*Locally conformal Kähler geometry*, Progress in Mathematics, vol. 155, Birkhäuser Boston, Inc., Boston, MA, 1998. MR**1481969**, DOI 10.1007/978-1-4612-2026-8 - P. Gauduchon and L. Ornea,
*Locally conformally Kähler metrics on Hopf surfaces*, Ann. Inst. Fourier (Grenoble)**48**(1998), no. 4, 1107–1127 (English, with English and French summaries). MR**1656010** - Yoshinobu Kamishima and Liviu Ornea,
*Geometric flow on compact locally conformally Kähler manifolds*, Tohoku Math. J. (2)**57**(2005), no. 2, 201–221. MR**2137466** - Karl Oeljeklaus and Matei Toma,
*Non-Kähler compact complex manifolds associated to number fields*, Ann. Inst. Fourier (Grenoble)**55**(2005), no. 1, 161–171 (English, with English and French summaries). MR**2141693** - Liviu Ornea,
*Locally conformally Kähler manifolds. A selection of results*, Lecture notes of Seminario Interdisciplinare di Matematica. Vol. IV, Lect. Notes Semin. Interdiscip. Mat., vol. 4, Semin. Interdiscip. Mat. (S.I.M.), Potenza, 2005, pp. 121–152. MR**2222543** - Liviu Ornea and Misha Verbitsky,
*Structure theorem for compact Vaisman manifolds*, Math. Res. Lett.**10**(2003), no. 5-6, 799–805. MR**2024735**, DOI 10.4310/MRL.2003.v10.n6.a7 - Liviu Ornea and Misha Verbitsky,
*An immersion theorem for Vaisman manifolds*, Math. Ann.**332**(2005), no. 1, 121–143. MR**2139254**, DOI 10.1007/s00208-004-0620-4 - Liviu Ornea and Misha Verbitsky,
*Sasakian structures on CR-manifolds*, Geom. Dedicata**125**(2007), 159–173. MR**2322546**, DOI 10.1007/s10711-007-9149-5 - Liviu Ornea and Misha Verbitsky,
*Morse-Novikov cohomology of locally conformally Kähler manifolds*, J. Geom. Phys.**59**(2009), no. 3, 295–305. MR**2501742**, DOI 10.1016/j.geomphys.2008.11.003 - Liviu Ornea and Misha Verbitsky,
*Locally conformal Kähler manifolds with potential*, Math. Ann.**348**(2010), no. 1, 25–33. MR**2657432**, DOI 10.1007/s00208-009-0463-0 - Liviu Ornea and Misha Verbitsky,
*Topology of locally conformally Kähler manifolds with potential*, Int. Math. Res. Not. IMRN**4**(2010), 717–726. MR**2595004**, DOI 10.1093/imrn/rnp144 - L. Ornea and M. Verbitsky,
*A report on locally conformally Kähler manifolds*, Harmonic maps and differential geometry, Contemp. Math., vol. 542, Amer. Math. Soc., Providence, RI, 2011, pp. 135–149. MR**2796645**, DOI 10.1090/conm/542/10703 - Izu Vaisman,
*On locally conformal almost Kähler manifolds*, Israel J. Math.**24**(1976), no. 3-4, 338–351. MR**418003**, DOI 10.1007/BF02834764 - M. S. Verbitskiĭ,
*Theorems on the vanishing of cohomology for locally conformally hyper-Kähler manifolds*, Tr. Mat. Inst. Steklova**246**(2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 64–91 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math.**3(246)**(2004), 54–78. MR**2101284**

## Additional Information

**Liviu Ornea**- Affiliation: University of Bucharest, Faculty of Mathematics, 14 Academiei Street, 70109 Bucharest, Romania – and – Institute of Mathematics “Simion Stoilow” of the Romanian Academy, 21, Calea Grivitei Street 010702-Bucharest, Romania
- MR Author ID: 134290
- Email: Liviu.Ornea@imar.ro, lornea@fmi.unibuc.ro
**Misha Verbitsky**- Affiliation: Laboratory of Algebraic Geometry, National Research University HSE, 7 Vavilova Street, Moscow, Russia, 117312
- Email: verbit@mccme.ru, verbit@verbit.ru
- Received by editor(s): April 21, 2013
- Received by editor(s) in revised form: August 24, 2014
- Published electronically: September 9, 2015
- Additional Notes: The first author was partially supported by CNCS UEFISCDI, project number PN-II-ID-PCE-2011-3-0118.

The second author was partially supported by RSCF grant 14-21-00053 within AG Laboratory NRU-HSE. - Communicated by: Michael Wolf
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**144**(2016), 325-335 - MSC (2010): Primary 53C55, 53C25
- DOI: https://doi.org/10.1090/proc12770
- MathSciNet review: 3415599