Semiorthogonal decompositions for twisted grassmannians
HTML articles powered by AMS MathViewer
- by Sanghoon Baek
- Proc. Amer. Math. Soc. 144 (2016), 1-5
- DOI: https://doi.org/10.1090/proc/12882
- Published electronically: September 15, 2015
- PDF | Request permission
Abstract:
In this article, we present semiorthogonal decompositions for twisted forms of grassmannians.References
- A. A. Beĭlinson, Coherent sheaves on $\textbf {P}^{n}$ and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68–69 (Russian). MR 509388
- Marcello Bernardara, A semiorthogonal decomposition for Brauer-Severi schemes, Math. Nachr. 282 (2009), no. 10, 1406–1413. MR 2571702, DOI 10.1002/mana.200610826
- A. I. Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 25–44 (Russian); English transl., Math. USSR-Izv. 34 (1990), no. 1, 23–42. MR 992977, DOI 10.1070/IM1990v034n01ABEH000583
- A. I. Bondal and M. M. Kapranov, Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 6, 1183–1205, 1337 (Russian); English transl., Math. USSR-Izv. 35 (1990), no. 3, 519–541. MR 1039961, DOI 10.1070/IM1990v035n03ABEH000716
- M. M. Kapranov, On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math. 92 (1988), no. 3, 479–508. MR 939472, DOI 10.1007/BF01393744
- D. O. Orlov, Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 4, 852–862 (Russian, with Russian summary); English transl., Russian Acad. Sci. Izv. Math. 41 (1993), no. 1, 133–141. MR 1208153, DOI 10.1070/IM1993v041n01ABEH002182
- Marc Levine, V. Srinivas, and Jerzy Weyman, $K$-theory of twisted Grassmannians, $K$-Theory 3 (1989), no. 2, 99–121. MR 1029954, DOI 10.1007/BF00533374
- I. A. Panin, Algebraic $K$-theory of Grassmannian manifolds and their twisted forms, Funktsional. Anal. i Prilozhen. 23 (1989), no. 2, 71–72 (Russian); English transl., Funct. Anal. Appl. 23 (1989), no. 2, 143–144. MR 1011365, DOI 10.1007/BF01078789
Bibliographic Information
- Sanghoon Baek
- Affiliation: Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
- MR Author ID: 875898
- Email: sanghoonbaek@kaist.ac.kr
- Received by editor(s): March 11, 2013
- Published electronically: September 15, 2015
- Communicated by: Harm Derksen
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 1-5
- MSC (2010): Primary 14C35, 14F05; Secondary 18E30, 14M15
- DOI: https://doi.org/10.1090/proc/12882
- MathSciNet review: 3415571