A topological characterization for non-wandering surface flows
HTML articles powered by AMS MathViewer
- by Tomoo Yokoyama
- Proc. Amer. Math. Soc. 144 (2016), 315-323
- DOI: https://doi.org/10.1090/proc/12898
- Published electronically: September 15, 2015
- PDF | Request permission
Abstract:
Let $v$ be a continuous flow with arbitrary singularities on a compact surface. Then we show that if $v$ is non-wandering, then $v$ is topologically equivalent to a $C^{\infty }$ flow such that $\mathrm {Per}(v)$ is open, there are no exceptional orbits, and that $\mathrm {P} \sqcup \mathrm {Sing}(v) = \{ x \in M \mid \omega (x) \cup \alpha (x) \subseteq \mathrm {Sing}(v) \}$, where $\mathrm {P}$ is the union of non-closed proper orbits and $\sqcup$ is the disjoint union symbol. Moreover, $v$ is non-wandering if and only if $\overline {\mathrm {LD}\sqcup \mathrm {Per}(v)} \supseteq M - \mathrm {Sing}(v)$, where $\mathrm {LD}$ is the union of locally dense orbits and $\overline {A}$ is the closure of a subset $A \subseteq M$. On the other hand, $v$ is topologically transitive if and only if $v$ is non-wandering such that $\mathrm {int}(\mathrm {Per}(v) \sqcup \mathrm {Sing}(v)) = \emptyset$ and $M - (\mathrm {P} \sqcup \mathrm {Sing}(v))$ is connected, where $\mathrm {int} {A}$ is the interior of a subset $A \subseteq M$. In addition, we construct a smooth flow on $\mathbb {T}^2$ with $\overline {\mathrm {P}} = \overline {\mathrm {LD}} =\mathbb {T}^2$.References
- S. H. Aranson, Trajectories on nonorientable two-dimensional manifolds, Mat. Sb. (N.S.) 80 (122) (1969), 314–333 (Russian). MR 0259284
- S. Kh. Aranson, G. R. Belitsky, and E. V. Zhuzhoma, Introduction to the qualitative theory of dynamical systems on surfaces, Translations of Mathematical Monographs, vol. 153, American Mathematical Society, Providence, RI, 1996. Translated from the Russian manuscript by H. H. McFaden. MR 1400885, DOI 10.1090/mmono/153
- S. Aranson and E. Zhuzhoma, Maier’s theorems and geodesic laminations of surface flows, J. Dynam. Control Systems 2 (1996), no. 4, 557–582. MR 1420359, DOI 10.1007/BF02254703
- N. P. Bhatia and G. P. Szegö, Stability theory of dynamical systems, Die Grundlehren der mathematischen Wissenschaften, Band 161, Springer-Verlag, New York-Berlin, 1970. MR 0289890
- T. M. Cherry, Topological Properties of the Solutions of Ordinary Differential Equations, Amer. J. Math. 59 (1937), no. 4, 957–982. MR 1507295, DOI 10.2307/2371361
- Milton Cobo, Carlos Gutierrez, and Jaume Llibre, Flows without wandering points on compact connected surfaces, Trans. Amer. Math. Soc. 362 (2010), no. 9, 4569–4580. MR 2645042, DOI 10.1090/S0002-9947-10-05113-5
- A. Denjoy, Sur les courbes définies par les équations differentielles a la surface du tore J. Math. Pures Appl. (9) 11 (1932), 333–375.
- John M. Franks, Two foliations in the plane, Proc. Amer. Math. Soc. 58 (1976), 262–264. MR 415634, DOI 10.1090/S0002-9939-1976-0415634-4
- Carlos Gutiérrez, Smoothing continuous flows on two-manifolds and recurrences, Ergodic Theory Dynam. Systems 6 (1986), no. 1, 17–44. MR 837974, DOI 10.1017/S0143385700003278
- Gilbert Hector and Ulrich Hirsch, Introduction to the geometry of foliations. Part A, 2nd ed., Aspects of Mathematics, vol. 1, Friedr. Vieweg & Sohn, Braunschweig, 1986. Foliations on compact surfaces, fundamentals for arbitrary codimension, and holonomy. MR 881799, DOI 10.1007/978-3-322-90115-6
- Gilbert Hector, Quelques exemples de feuilletages espèces rares, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 1, xi, 239–264 (French, with English summary). MR 413128
- A. Mayer, Trajectories on the closed orientable surfaces, Rec. Math. [Mat. Sbornik] N.S. 12(54) (1943), 71–84 (Russian, with English summary). MR 0009485
- Nelson G. Markley, On the number of recurrent orbit closures, Proc. Amer. Math. Soc. 25 (1970), 413–416. MR 256375, DOI 10.1090/S0002-9939-1970-0256375-0
- Habib Marzougui, Flows with infinite singularities on closed two-manifolds, J. Dynam. Control Systems 6 (2000), no. 4, 461–476. MR 1778209, DOI 10.1023/A:1009574926153
- Habib Marzougui, Structure des feuilles sur les surfaces ouvertes, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 2, 185–188 (French, with English and French summaries). MR 1402540
- Habib Marzougui and Gabriel Soler López, Area preserving analytic flows with dense orbits, Topology Appl. 156 (2009), no. 18, 3011–3015. MR 2556059, DOI 10.1016/j.topol.2009.05.011
- Igor Nikolaev, Non-wandering flows on the 2-manifolds, J. Differential Equations 173 (2001), no. 1, 1–16. MR 1836242, DOI 10.1006/jdeq.2000.3924
- Igor Nikolaev and Evgeny Zhuzhoma, Flows on 2-dimensional manifolds, Lecture Notes in Mathematics, vol. 1705, Springer-Verlag, Berlin, 1999. An overview. MR 1707298, DOI 10.1007/BFb0093599
- H. Poincaré, Sur les courbes définies par une équation différentielle IV, J. Math. Pures Appl. 85 (1886), 151–217.
- J. H. Roberts and N. E. Steenrod, Monotone transformations of two-dimensional manifolds, Ann. of Math. (2) 39 (1938), no. 4, 851–862. MR 1503441, DOI 10.2307/1968468
- Arthur J. Schwartz, A generalization of a Poincaré-Bendixson theorem to closed two-dimensional manifolds, Amer. J. Math. 85 (1963), 453–458; errata: 85 (1963), 753. MR 0155061
Bibliographic Information
- Tomoo Yokoyama
- Affiliation: Department of Mathematics, Faculty of Education, Kyoto University of Education, 1 Fujinomori, Fukakusa, Fushimi-ku, Kyoto, 612-8522, Japan
- Email: tomoo@kyokyo-u.ac.jp
- Received by editor(s): November 19, 2014
- Received by editor(s) in revised form: November 21, 2014, and December 30, 2014
- Published electronically: September 15, 2015
- Additional Notes: The author was partially supported by the JST CREST Program at Department of Mathematics, Kyoto University of Education.
- Communicated by: Nimish Shah
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 315-323
- MSC (2010): Primary 37E35; Secondary 57R30
- DOI: https://doi.org/10.1090/proc/12898
- MathSciNet review: 3415598