## On the improvement of concavity of convex measures

HTML articles powered by AMS MathViewer

- by Arnaud Marsiglietti PDF
- Proc. Amer. Math. Soc.
**144**(2016), 775-786 Request permission

## Abstract:

We prove that a general class of measures, which includes $\log$-concave measures, is $\frac {1}{n}$-concave according to the terminology of Borell, with additional assumptions on the measures or on the sets, such as symmetries. This generalizes results of Gardner and Zvavitch published in 2010.## References

- T. Bonnesen and W. Fenchel,
*Theory of convex bodies*, BCS Associates, Moscow, ID, 1987. Translated from the German and edited by L. Boron, C. Christenson and B. Smith. MR**920366** - C. Borell,
*Convex set functions in $d$-space*, Period. Math. Hungar.**6**(1975), no. 2, 111–136. MR**404559**, DOI 10.1007/BF02018814 - Herm Jan Brascamp and Elliott H. Lieb,
*On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation*, J. Functional Analysis**22**(1976), no. 4, 366–389. MR**0450480**, DOI 10.1016/0022-1236(76)90004-5 - D. Cordero-Erausquin, M. Fradelizi, and B. Maurey,
*The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems*, J. Funct. Anal.**214**(2004), no. 2, 410–427. MR**2083308**, DOI 10.1016/j.jfa.2003.12.001 - S. Dancs and B. Uhrin,
*On a class of integral inequalities and their measure-theoretic consequences*, J. Math. Anal. Appl.**74**(1980), no. 2, 388–400. MR**572660**, DOI 10.1016/0022-247X(80)90136-5 - Matthieu Fradelizi and Arnaud Marsiglietti,
*On the analogue of the concavity of entropy power in the Brunn-Minkowski theory*, Adv. in Appl. Math.**57**(2014), 1–20. MR**3206519**, DOI 10.1016/j.aam.2014.02.004 - R. J. Gardner,
*The Brunn-Minkowski inequality*, Bull. Amer. Math. Soc. (N.S.)**39**(2002), no. 3, 355–405. MR**1898210**, DOI 10.1090/S0273-0979-02-00941-2 - Richard J. Gardner and Artem Zvavitch,
*Gaussian Brunn-Minkowski inequalities*, Trans. Amer. Math. Soc.**362**(2010), no. 10, 5333–5353. MR**2657682**, DOI 10.1090/S0002-9947-2010-04891-3 - G. H. Hardy, J. E. Littlewood, and G. Pólya,
*Inequalities*, Cambridge, at the University Press, 1952. 2d ed. MR**0046395** - R. Henstock and A. M. Macbeath,
*On the measure of sum-sets. I. The theorems of Brunn, Minkowski, and Lusternik*, Proc. London Math. Soc. (3)**3**(1953), 182–194. MR**56669**, DOI 10.1112/plms/s3-3.1.182 - María A. Hernández Cifre and Jesús Yepes Nicolás,
*Refinements of the Brunn-Minkowski inequality*, J. Convex Anal.**21**(2014), no. 3, 727–743. MR**3243816** - Daniel Hug, Günter Last, and Wolfgang Weil,
*A local Steiner-type formula for general closed sets and applications*, Math. Z.**246**(2004), no. 1-2, 237–272. MR**2031455**, DOI 10.1007/s00209-003-0597-9 - J. Kampf,
*The parallel volume at large distances*, Geom. Dedicata**160**(2012), 47–70. MR**2970042**, DOI 10.1007/s10711-011-9669-x - R. Latała,
*On some inequalities for Gaussian measures*, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 813–822. MR**1957087** - L. Leindler,
*On a certain converse of Hölder’s inequality. II*, Acta Sci. Math. (Szeged)**33**(1972), no. 3-4, 217–223. MR**2199372** - A. Livne Bar-on,
*The (B) conjecture for uniform measures in the plane*, Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics Volume 2116, 2014, 341-353. - A. Marsiglietti,
*Concavity properties of extensions of the parallel volume*, Mathematika, Available on CJO2015 doi:10.1112/S0025579314000369. - Piotr Nayar and Tomasz Tkocz,
*A note on a Brunn-Minkowski inequality for the Gaussian measure*, Proc. Amer. Math. Soc.**141**(2013), no. 11, 4027–4030. MR**3091793**, DOI 10.1090/S0002-9939-2013-11609-6 - András Prékopa,
*Logarithmic concave measures with application to stochastic programming*, Acta Sci. Math. (Szeged)**32**(1971), 301–316. MR**315079** - András Prékopa,
*On logarithmic concave measures and functions*, Acta Sci. Math. (Szeged)**34**(1973), 335–343. MR**404557** - C. Saroglou,
*Remarks on the conjectured log-Brunn-Minkowski inequality*, To appear in Geom. Dedicata. - Rolf Schneider,
*Convex bodies: the Brunn-Minkowski theory*, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR**1216521**, DOI 10.1017/CBO9780511526282 - J. Steiner,
*Über parallele Flächen*, Monatsbericht der Akademie der Wissenschaften zu Berlin (1840), pp. 114–118.

## Additional Information

**Arnaud Marsiglietti**- Affiliation: Université Paris-Est, LAMA (UMR 8050), UPEMLV, UPEC, CNRS, F-77454, Marne-la-Vallée, France
- MR Author ID: 1063405
- Email: arnaud.marsiglietti@u-pem.fr
- Received by editor(s): April 4, 2014
- Received by editor(s) in revised form: December 12, 2014
- Published electronically: June 24, 2015
- Additional Notes: The author was supported in part by the Agence Nationale de la Recherche, project GeMeCoD (ANR 2011 BS01 007 01).
- Communicated by: Thomas Schlumprecht
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**144**(2016), 775-786 - MSC (2010): Primary 52A20, 52A40; Secondary 28A75, 60G15
- DOI: https://doi.org/10.1090/proc/12694
- MathSciNet review: 3430853