A note on the concordance invariants epsilon and upsilon
HTML articles powered by AMS MathViewer
- by Jennifer Hom
- Proc. Amer. Math. Soc. 144 (2016), 897-902
- DOI: https://doi.org/10.1090/proc/12706
- Published electronically: May 28, 2015
- PDF | Request permission
Abstract:
Ozsváth-Stipsicz-Szabó recently defined a one-parameter family $\Upsilon _K(t)$ of concordance invariants associated to the knot Floer complex. We compare their invariant to the $\{ -1, 0, 1\}$-valued concordance invariant $\varepsilon (K)$, which is also associated to the knot Floer complex. In particular, we give an example of a knot $K$ with $\Upsilon _K(t) \equiv 0$ but $\varepsilon (K) \neq 0$.References
- Matthew Hedden, On knot Floer homology and cabling. II, Int. Math. Res. Not. IMRN 12 (2009), 2248–2274. MR 2511910, DOI 10.1093/imrn/rnp015
- Stephen Hancock, Jennifer Hom, and Michael Newman, On the knot Floer filtration of the concordance group, J. Knot Theory Ramifications 22 (2013), no. 14, 1350084, 30. MR 3190122, DOI 10.1142/S0218216513500843
- Jennifer Hom, The knot Floer complex and the smooth concordance group, Comment. Math. Helv. 89 (2014), no. 3, 537–570. MR 3260841, DOI 10.4171/CMH/326
- Jennifer Hom, A note on cabling and $L$-space surgeries, Algebr. Geom. Topol. 11 (2011), no. 1, 219–223. MR 2764041, DOI 10.2140/agt.2011.11.219
- Jennifer Hom, On the concordance genus of topologically slice knots, preprint (2012), to appear in Int. Math. Res. Not. IMRN, available at arXiv:1203.4594v1.
- Jennifer Hom, An infinite rank summand of topologically slice knots, preprint (2013), to appear in Geom. Topol., available at arXiv:1310.4476v1.
- Jennifer Hom, Bordered Heegaard Floer homology and the tau-invariant of cable knots, J. Topol. 7 (2014), no. 2, 287–326. MR 3217622, DOI 10.1112/jtopol/jtt030
- Matthew Hedden and Liam Watson, On the geography and botany of knot Floer homology, preprint (2014), arXiv:1404.6913v2.
- Peter Ozsváth and Zoltán Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003), 615–639. MR 2026543, DOI 10.2140/gt.2003.7.615
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58–116. MR 2065507, DOI 10.1016/j.aim.2003.05.001
- Peter Ozsváth and Zoltán Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005), no. 6, 1281–1300. MR 2168576, DOI 10.1016/j.top.2005.05.001
- Peter Ozsváth, András Stipsicz, and Zoltán Szabó, Concordance homomorphisms from knot Floer homology, preprint (2014), arXiv:1407.1795.
- Jacob Andrew Rasmussen, Floer homology and knot complements, ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.)–Harvard University. MR 2704683
Bibliographic Information
- Jennifer Hom
- Affiliation: Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027
- MR Author ID: 923914
- ORCID: 0000-0003-4839-8276
- Email: hom@math.columbia.edu
- Received by editor(s): September 28, 2014
- Received by editor(s) in revised form: December 29, 2014
- Published electronically: May 28, 2015
- Additional Notes: The author was partially supported by NSF grant DMS-1307879.
- Communicated by: Martin Scharlemann
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 897-902
- MSC (2010): Primary 57M25, 57N70, 57R58
- DOI: https://doi.org/10.1090/proc/12706
- MathSciNet review: 3430863