Slicing inequalities for subspaces of $L_p$
HTML articles powered by AMS MathViewer
- by Alexander Koldobsky
- Proc. Amer. Math. Soc. 144 (2016), 787-795
- DOI: https://doi.org/10.1090/proc12708
- Published electronically: May 28, 2015
- PDF | Request permission
Abstract:
We prove slicing inequalities for measures of the unit balls of subspaces of $L_p$, $-\infty <p<\infty .$ For example, for every $k\in \mathbb {N}$ there exists a constant $C(k)$ such that for every $n\in \mathbb {N},\ k<n$, every convex $k$-intersection body (unit ball of a normed subspace of $L_{-k})$ $L$ in $\mathbb {R}^n$ and every measure $\mu$ with non-negative even continuous density in $\mathbb {R}^n,$ \[ \mu (L)\ \le \ C(k) \max _{\xi \in S^{n-1}} \mu (L\cap \xi ^\bot )\ |L|^{1/n} \ ,\] where $\xi ^\bot$ is the central hyperplane in $\mathbb {R}^n$ perpendicular to $\xi ,$ and $|L|$ is the volume of $L.$ This and other results are in the spirit of the hyperplane problem of Bourgain. The proofs are based on stability inequalities for intersection bodies and estimates for the Banach-Mazur distance from the unit ball of a subspace of $L_p$ to the class of intersection bodies.References
- K. Ball, Isometric problems in $\ell _p$ and sections of convex sets, Ph.D. dissertation, Trinity College, Cambridge (1986).
- Keith Ball, Normed spaces with a weak-Gordon-Lewis property, Functional analysis (Austin, TX, 1987/1989) Lecture Notes in Math., vol. 1470, Springer, Berlin, 1991, pp. 36–47. MR 1126735, DOI 10.1007/BFb0090210
- J. Bourgain, On high-dimensional maximal functions associated to convex bodies, Amer. J. Math. 108 (1986), no. 6, 1467–1476. MR 868898, DOI 10.2307/2374532
- J. Bourgain, Geometry of Banach spaces and harmonic analysis, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 871–878. MR 934289
- J. Bourgain, On the distribution of polynomials on high-dimensional convex sets, Geometric aspects of functional analysis (1989–90), Lecture Notes in Math., vol. 1469, Springer, Berlin, 1991, pp. 127–137. MR 1122617, DOI 10.1007/BFb0089219
- S. Brazitikos, A. Giannopoulos, P. Valettas, and B. Vritsiou, Geometry of isotropic log-concave measures, preprint.
- Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR 2251886, DOI 10.1017/CBO9781107341029
- Eric Grinberg and Gaoyong Zhang, Convolutions, transforms, and convex bodies, Proc. London Math. Soc. (3) 78 (1999), no. 1, 77–115. MR 1658156, DOI 10.1112/S0024611599001653
- Marius Junge, Hyperplane conjecture for quotient spaces of $L_p$, Forum Math. 6 (1994), no. 5, 617–635. MR 1295155, DOI 10.1515/form.1994.6.617
- N. J. Kalton and A. Koldobsky, Intersection bodies and $L_p$-spaces, Adv. Math. 196 (2005), no. 2, 257–275. MR 2166308, DOI 10.1016/j.aim.2004.09.002
- N. J. Kalton, A. Koldobsky, V. Yaskin, and M. Yaskina, The geometry of $L_0$, Canad. J. Math. 59 (2007), no. 5, 1029–1049. MR 2354401, DOI 10.4153/CJM-2007-044-0
- N. J. Kalton and M. Zymonopoulou, Positive definite distributions and normed spaces, Adv. Math. 227 (2011), no. 2, 986–1018. MR 2793030, DOI 10.1016/j.aim.2011.02.019
- B. Klartag, On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal. 16 (2006), no. 6, 1274–1290. MR 2276540, DOI 10.1007/s00039-006-0588-1
- Alexander Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs, vol. 116, American Mathematical Society, Providence, RI, 2005. MR 2132704, DOI 10.1090/surv/116
- Alexander Koldobsky, Positive definite distributions and subspaces of $L_{-p}$ with applications to stable processes, Canad. Math. Bull. 42 (1999), no. 3, 344–353. MR 1703694, DOI 10.4153/CMB-1999-040-5
- A. Koldobsky, A generalization of the Busemann-Petty problem on sections of convex bodies, Israel J. Math. 110 (1999), 75–91. MR 1750442, DOI 10.1007/BF02808176
- A. Koldobsky, A functional analytic approach to intersection bodies, Geom. Funct. Anal. 10 (2000), no. 6, 1507–1526. MR 1810751, DOI 10.1007/PL00001659
- Alexander Koldobsky, Stability in the Busemann-Petty and Shephard problems, Adv. Math. 228 (2011), no. 4, 2145–2161. MR 2836117, DOI 10.1016/j.aim.2011.06.031
- Alexander Koldobsky, A hyperplane inequality for measures of convex bodies in $\Bbb R^n$, $n\leq 4$, Discrete Comput. Geom. 47 (2012), no. 3, 538–547. MR 2891246, DOI 10.1007/s00454-011-9362-8
- Alexander Koldobsky, A $\sqrt {n}$ estimate for measures of hyperplane sections of convex bodies, Adv. Math. 254 (2014), 33–40. MR 3161089, DOI 10.1016/j.aim.2013.12.029
- A. Koldobsky, Estimates for measures of sections of convex bodies, arXiv:1309.6485
- A. Koldobsky, Stability and separation in volume comparison problems, Math. Model. Nat. Phenom. 8 (2013), no. 1, 156–169. MR 3022986, DOI 10.1051/mmnp/20138111
- A. Koldobsky, A. Pajor, and V. Yaskin, Inequalities of the Kahane-Khinchin type and sections of $L_p$-balls, Studia Math. 184 (2008), no. 3, 217–231. MR 2369140, DOI 10.4064/sm184-3-2
- Alexander Koldobsky and Vladyslav Yaskin, The interface between convex geometry and harmonic analysis, CBMS Regional Conference Series in Mathematics, vol. 108, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2008. MR 2365157
- D. R. Lewis, Finite dimensional subspaces of $L_{p}$, Studia Math. 63 (1978), no. 2, 207–212. MR 511305, DOI 10.4064/sm-63-2-207-212
- Erwin Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math. 71 (1988), no. 2, 232–261. MR 963487, DOI 10.1016/0001-8708(88)90077-1
- B. Maurey, Théoremes de factorization pour les operatèurs linéaires à valeurs dans les espaces $L_p$. Astérisque 11 (1974), Société Math. de France.
- Emanuel Milman, Dual mixed volumes and the slicing problem, Adv. Math. 207 (2006), no. 2, 566–598. MR 2271017, DOI 10.1016/j.aim.2005.09.008
- Emanuel Milman, Generalized intersection bodies, J. Funct. Anal. 240 (2006), no. 2, 530–567. MR 2261694, DOI 10.1016/j.jfa.2006.04.004
- Emanuel Milman, Generalized intersection bodies are not equivalent, Adv. Math. 217 (2008), no. 6, 2822–2840. MR 2397468, DOI 10.1016/j.aim.2007.11.007
- V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed $n$-dimensional space, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 64–104. MR 1008717, DOI 10.1007/BFb0090049
- E. M. Nikišin, Resonance theorems and superlinear operators, Uspehi Mat. Nauk 25 (1970), no. 6(156), 129–191 (Russian). MR 0296584
- Gideon Schechtman and Artem Zvavitch, Embedding subspaces of $L_p$ into $l^N_p$, $0<p<1$, Math. Nachr. 227 (2001), 133–142. MR 1840560, DOI 10.1002/1522-2616(200107)227:1<133::AID-MANA133>3.3.CO;2-
- Vladyslav Yaskin, On strict inclusions in hierarchies of convex bodies, Proc. Amer. Math. Soc. 136 (2008), no. 9, 3281–3291. MR 2407094, DOI 10.1090/S0002-9939-08-09424-0
- Vladyslav Yaskin, Counterexamples to convexity of $k$-intersection bodies, Proc. Amer. Math. Soc. 142 (2014), no. 12, 4355–4363. MR 3267003, DOI 10.1090/S0002-9939-2014-12254-4
- Gaoyong Zhang, Sections of convex bodies, Amer. J. Math. 118 (1996), no. 2, 319–340. MR 1385280
Bibliographic Information
- Alexander Koldobsky
- Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
- MR Author ID: 104225
- Email: koldobskiya@missouri.edu
- Received by editor(s): July 20, 2014
- Received by editor(s) in revised form: December 26, 2014
- Published electronically: May 28, 2015
- Additional Notes: This work was partially supported by the US National Science Foundation, grant DMS-1265155.
- Communicated by: Thomas Schlumprecht
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 787-795
- MSC (2010): Primary 52A20; Secondary 46B07
- DOI: https://doi.org/10.1090/proc12708
- MathSciNet review: 3430854