## The solution operator of the inhomogeneous Dirichlet problem in the unit ball

HTML articles powered by AMS MathViewer

- by David Kalaj and Djordjije Vujadinović PDF
- Proc. Amer. Math. Soc.
**144**(2016), 623-635 Request permission

## Abstract:

In this paper we estimate norms of integral operator induced by the Green function related to the Poisson equation in the unit ball with vanishing boundary data.## References

- Lars V. Ahlfors,
*Möbius transformations in several dimensions*, Ordway Professorship Lectures in Mathematics, University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981. MR**725161** - J. M. Anderson and A. Hinkkanen,
*The Cauchy transform on bounded domains*, Proc. Amer. Math. Soc.**107**(1989), no. 1, 179–185. MR**972226**, DOI 10.1090/S0002-9939-1989-0972226-5 - J. M. Anderson, D. Khavinson, and V. Lomonosov,
*Spectral properties of some integral operators arising in potential theory*, Quart. J. Math. Oxford Ser. (2)**43**(1992), no. 172, 387–407. MR**1188382**, DOI 10.1093/qmathj/43.4.387 - J. Arazy and D. Khavinson,
*Spectral estimates of Cauchy’s transform in $L^2(\Omega )$*, Integral Equations Operator Theory**15**(1992), no. 6, 901–919. MR**1188786**, DOI 10.1007/BF01203120 - Milutin R. Dostanić,
*Norm estimate of the Cauchy transform on $L^p(\Omega )$*, Integral Equations Operator Theory**52**(2005), no. 4, 465–475. MR**2184599**, DOI 10.1007/s00020-002-1290-9 - Milutin R. Dostanić,
*Estimate of the second term in the spectral asymptotic of Cauchy transform*, J. Funct. Anal.**249**(2007), no. 1, 55–74. MR**2338854**, DOI 10.1016/j.jfa.2007.04.007 - Milutin R. Dostanić,
*The properties of the Cauchy transform on a bounded domain*, J. Operator Theory**36**(1996), no. 2, 233–247. MR**1432117** - S. S. Dragomir, R. P. Agarwal, and N. S. Barnett,
*Inequalities for beta and gamma functions via some classical and new integral inequalities*, J. Inequal. Appl.**5**(2000), no. 2, 103–165. MR**1753533**, DOI 10.1155/S1025583400000084 - Håkan Hedenmalm and Serguei Shimorin,
*Weighted Bergman spaces and the integral means spectrum of conformal mappings*, Duke Math. J.**127**(2005), no. 2, 341–393. MR**2130416**, DOI 10.1215/S0012-7094-04-12725-3 - Ricardo G. Durán, Marcela Sanmartino, and Marisa Toschi,
*Weighted a priori estimates for the Poisson equation*, Indiana Univ. Math. J.**57**(2008), no. 7, 3463–3478. MR**2492240**, DOI 10.1512/iumj.2008.57.3427 - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190**, DOI 10.1007/978-3-642-61798-0 - David Kalaj,
*On some integral operators related to the Poisson equation*, Integral Equations Operator Theory**72**(2012), no. 4, 563–575. MR**2904611**, DOI 10.1007/s00020-012-1952-1 - David Kalaj,
*Cauchy transform and Poisson’s equation*, Adv. Math.**231**(2012), no. 1, 213–242. MR**2935387**, DOI 10.1016/j.aim.2012.05.003 - David Kalaj and Miroslav Pavlović,
*On quasiconformal self-mappings of the unit disk satisfying Poisson’s equation*, Trans. Amer. Math. Soc.**363**(2011), no. 8, 4043–4061. MR**2792979**, DOI 10.1090/S0002-9947-2011-05081-6 - Dmitry Khavinson,
*On uniform approximation by harmonic functions*, Michigan Math. J.**34**(1987), no. 3, 465–473. MR**911819**, DOI 10.1307/mmj/1029003626 - G. O. Thorin,
*Convexity theorems generalizing those of M. Riesz and Hadamard with some applications*, Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.]**9**(1948), 1–58. MR**25529**

## Additional Information

**David Kalaj**- Affiliation: Faculty of Mathematics, University of Montenegro, Dzordza Vašingtona bb, 81000 Podgorica, Montenegro
- MR Author ID: 689421
**Djordjije Vujadinović**- Affiliation: Faculty of Mathematics, University of Montenegro, Dzordza Vašingtona bb, 81000 Podgorica, Montenegro
- MR Author ID: 1019454
- Email: djordjijevuj@t-com.me
- Received by editor(s): October 9, 2014
- Received by editor(s) in revised form: January 12, 2015
- Published electronically: August 26, 2015
- Communicated by: Franc Forstneric
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**144**(2016), 623-635 - MSC (2010): Primary 35J05; Secondary 47G10
- DOI: https://doi.org/10.1090/proc/12723
- MathSciNet review: 3430840