## Multiple solutions for an indefinite elliptic problem with critical growth in the gradient

HTML articles powered by AMS MathViewer

- by Louis Jeanjean and Humberto Ramos Quoirin PDF
- Proc. Amer. Math. Soc.
**144**(2016), 575-586 Request permission

## Abstract:

We consider the problem \begin{equation} -\Delta u =c(x)u+\mu |\nabla u|^2 +f(x), \quad u \in H^1_0(\Omega ) \cap L^{\infty }(\Omega ), \tag {(P)} \end{equation} where $\Omega$ is a bounded domain of $\mathbb {R}^N$, $N \geq 3$, $\mu >0$ and $c, f \in L^q(\Omega ) \text { for some}$ $q>\frac {N}{2}$ with $f\gneqq 0.$ Here $c$ is allowed to change sign and we assume that $c^+ \not \equiv 0$. We show that when $c^+$ and $\mu f$ are suitably small this problem has at least two positive solutions. This result contrasts with the case $c \leq 0$, where uniqueness holds. To show this multiplicity result we first transform $(P)$ into a semilinear problem having a variational structure. Then we are led to the search of two critical points for a functional whose superquadratic part is indefinite in sign and has a so-called*slow growth*at infinity. The key point is to show that the Palais-Smale condition holds.

## References

- Haydar Abdel Hamid and Marie Françoise Bidaut-Veron,
*On the connection between two quasilinear elliptic problems with source terms of order 0 or 1*, Commun. Contemp. Math.**12**(2010), no. 5, 727–788. MR**2733197**, DOI 10.1142/S0219199710003993 - Boumediene Abdellaoui, Ireneo Peral, and Ana Primo,
*Elliptic problems with a Hardy potential and critical growth in the gradient: non-resonance and blow-up results*, J. Differential Equations**239**(2007), no. 2, 386–416. MR**2344278**, DOI 10.1016/j.jde.2007.05.010 - Boumediene Abdellaoui, Andrea Dall’Aglio, and Ireneo Peral,
*Some remarks on elliptic problems with critical growth in the gradient*, J. Differential Equations**222**(2006), no. 1, 21–62. MR**2200746**, DOI 10.1016/j.jde.2005.02.009 - Stanley Alama and Manuel Del Pino,
*Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking*, Ann. Inst. H. Poincaré C Anal. Non Linéaire**13**(1996), no. 1, 95–115 (English, with English and French summaries). MR**1373473**, DOI 10.1016/S0294-1449(16)30098-1 - Stanley Alama and Gabriella Tarantello,
*On semilinear elliptic equations with indefinite nonlinearities*, Calc. Var. Partial Differential Equations**1**(1993), no. 4, 439–475. MR**1383913**, DOI 10.1007/BF01206962 - David Arcoya, Colette De Coster, Louis Jeanjean, and Kazunaga Tanaka,
*Continuum of solutions for an elliptic problem with critical growth in the gradient*, J. Funct. Anal.**268**(2015), no. 8, 2298–2335. MR**3318650**, DOI 10.1016/j.jfa.2015.01.014 - David Arcoya, Colette De Coster, Louis Jeanjean, and Kazunaga Tanaka,
*Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions*, J. Math. Anal. Appl.**420**(2014), no. 1, 772–780. MR**3229851**, DOI 10.1016/j.jmaa.2014.06.007 - David Arcoya and Sergio Segura de León,
*Uniqueness of solutions for some elliptic equations with a quadratic gradient term*, ESAIM Control Optim. Calc. Var.**16**(2010), no. 2, 327–336. MR**2654196**, DOI 10.1051/cocv:2008072 - Guy Barles, Alain-Philippe Blanc, Christine Georgelin, and Magdalena Kobylanski,
*Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**28**(1999), no. 3, 381–404. MR**1736522** - Guy Barles and François Murat,
*Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions*, Arch. Rational Mech. Anal.**133**(1995), no. 1, 77–101. MR**1367357**, DOI 10.1007/BF00375351 - Guy Barles and Alessio Porretta,
*Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)**5**(2006), no. 1, 107–136. MR**2240185** - L. Boccardo, F. Murat, and J.-P. Puel,
*Existence de solutions faibles pour des équations elliptiques quasi-linéaires à croissance quadratique*, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. IV (Paris, 1981/1982) Res. Notes in Math., vol. 84, Pitman, Boston, Mass.-London, 1983, pp. 19–73 (French, with English summary). MR**716511** - L. Boccardo, F. Murat, and J.-P. Puel,
*Existence of bounded solutions for nonlinear elliptic unilateral problems*, Ann. Mat. Pura Appl. (4)**152**(1988), 183–196 (English, with French and Italian summaries). MR**980979**, DOI 10.1007/BF01766148 - L. Boccardo, F. Murat, and J.-P. Puel,
*$L^\infty$ estimate for some nonlinear elliptic partial differential equations and application to an existence result*, SIAM J. Math. Anal.**23**(1992), no. 2, 326–333 (English, with French summary). MR**1147866**, DOI 10.1137/0523016 - C. De Coster and L. Jeanjean,
*Multiplicity result in the non-resonant case for an elliptic problem with critical growth in the gradient*, in preparation. - Vincenzo Ferone and François Murat,
*Quasilinear problems having quadratic growth in the gradient: an existence result when the source term is small*, Équations aux dérivées partielles et applications, Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, 1998, pp. 497–515 (English, with English and French summaries). MR**1648236** - Vincenzo Ferone and François Murat,
*Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small*, Nonlinear Anal.**42**(2000), no. 7, Ser. A: Theory Methods, 1309–1326. MR**1780731**, DOI 10.1016/S0362-546X(99)00165-0 - Nathalie Grenon, François Murat, and Alessio Porretta,
*A priori estimates and existence for elliptic equations with gradient dependent terms*, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)**13**(2014), no. 1, 137–205. MR**3235059** - F. Hamel and E. Russ,
*Comparison results for semilinear elliptic equations using a new symmetrization method*, ArXiv 1401.1726. - Louis Jeanjean and Boyan Sirakov,
*Existence and multiplicity for elliptic problems with quadratic growth in the gradient*, Comm. Partial Differential Equations**38**(2013), no. 2, 244–264. MR**3009079**, DOI 10.1080/03605302.2012.738754 - Jerry L. Kazdan and Richard J. Kramer,
*Invariant criteria for existence of solutions to second-order quasilinear elliptic equations*, Comm. Pure Appl. Math.**31**(1978), no. 5, 619–645. MR**477446**, DOI 10.1002/cpa.3160310505 - Adele Manes and Anna Maria Micheletti,
*Un’estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine*, Boll. Un. Mat. Ital. (4)**7**(1973), 285–301 (Italian, with English summary). MR**0344663** - Miguel Ramos, Susanna Terracini, and Christophe Troestler,
*Superlinear indefinite elliptic problems and Pohožaev type identities*, J. Funct. Anal.**159**(1998), no. 2, 596–628. MR**1658097**, DOI 10.1006/jfan.1998.3332 - Boyan Sirakov,
*Solvability of uniformly elliptic fully nonlinear PDE*, Arch. Ration. Mech. Anal.**195**(2010), no. 2, 579–607. MR**2592289**, DOI 10.1007/s00205-009-0218-9 - Neil S. Trudinger,
*On Harnack type inequalities and their application to quasilinear elliptic equations*, Comm. Pure Appl. Math.**20**(1967), 721–747. MR**226198**, DOI 10.1002/cpa.3160200406

## Additional Information

**Louis Jeanjean**- Affiliation: Laboratoire de Mathématiques (UMR 6623), Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
- MR Author ID: 318795
- Email: louis.jeanjean@univ-fcomte.fr
**Humberto Ramos Quoirin**- Affiliation: Departamento de Matematica y Computación Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile
- MR Author ID: 876954
- Email: humberto.ramos@usach.cl
- Received by editor(s): July 15, 2014
- Received by editor(s) in revised form: December 25, 2014
- Published electronically: May 28, 2015
- Additional Notes: The second author was supported by the FONDECYT project 11121567. This work has been carried out in the framework of the project NONLOCAL (ANR-14-CE25-0013) funded by the French National Research Agency (ANR)
- Communicated by: Catherine Sulem
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**144**(2016), 575-586 - MSC (2010): Primary 35J20, 35J61, 35J91
- DOI: https://doi.org/10.1090/proc12724
- MathSciNet review: 3430835