Multiple solutions for an indefinite elliptic problem with critical growth in the gradient
HTML articles powered by AMS MathViewer
- by Louis Jeanjean and Humberto Ramos Quoirin
- Proc. Amer. Math. Soc. 144 (2016), 575-586
- DOI: https://doi.org/10.1090/proc12724
- Published electronically: May 28, 2015
- PDF | Request permission
Abstract:
We consider the problem \begin{equation} -\Delta u =c(x)u+\mu |\nabla u|^2 +f(x), \quad u \in H^1_0(\Omega ) \cap L^{\infty }(\Omega ), \tag {(P)} \end{equation} where $\Omega$ is a bounded domain of $\mathbb {R}^N$, $N \geq 3$, $\mu >0$ and $c, f \in L^q(\Omega ) \text { for some}$ $q>\frac {N}{2}$ with $f\gneqq 0.$ Here $c$ is allowed to change sign and we assume that $c^+ \not \equiv 0$. We show that when $c^+$ and $\mu f$ are suitably small this problem has at least two positive solutions. This result contrasts with the case $c \leq 0$, where uniqueness holds. To show this multiplicity result we first transform $(P)$ into a semilinear problem having a variational structure. Then we are led to the search of two critical points for a functional whose superquadratic part is indefinite in sign and has a so-called slow growth at infinity. The key point is to show that the Palais-Smale condition holds.References
- Haydar Abdel Hamid and Marie Françoise Bidaut-Veron, On the connection between two quasilinear elliptic problems with source terms of order 0 or 1, Commun. Contemp. Math. 12 (2010), no. 5, 727–788. MR 2733197, DOI 10.1142/S0219199710003993
- Boumediene Abdellaoui, Ireneo Peral, and Ana Primo, Elliptic problems with a Hardy potential and critical growth in the gradient: non-resonance and blow-up results, J. Differential Equations 239 (2007), no. 2, 386–416. MR 2344278, DOI 10.1016/j.jde.2007.05.010
- Boumediene Abdellaoui, Andrea Dall’Aglio, and Ireneo Peral, Some remarks on elliptic problems with critical growth in the gradient, J. Differential Equations 222 (2006), no. 1, 21–62. MR 2200746, DOI 10.1016/j.jde.2005.02.009
- Stanley Alama and Manuel Del Pino, Solutions of elliptic equations with indefinite nonlinearities via Morse theory and linking, Ann. Inst. H. Poincaré C Anal. Non Linéaire 13 (1996), no. 1, 95–115 (English, with English and French summaries). MR 1373473, DOI 10.1016/S0294-1449(16)30098-1
- Stanley Alama and Gabriella Tarantello, On semilinear elliptic equations with indefinite nonlinearities, Calc. Var. Partial Differential Equations 1 (1993), no. 4, 439–475. MR 1383913, DOI 10.1007/BF01206962
- David Arcoya, Colette De Coster, Louis Jeanjean, and Kazunaga Tanaka, Continuum of solutions for an elliptic problem with critical growth in the gradient, J. Funct. Anal. 268 (2015), no. 8, 2298–2335. MR 3318650, DOI 10.1016/j.jfa.2015.01.014
- David Arcoya, Colette De Coster, Louis Jeanjean, and Kazunaga Tanaka, Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions, J. Math. Anal. Appl. 420 (2014), no. 1, 772–780. MR 3229851, DOI 10.1016/j.jmaa.2014.06.007
- David Arcoya and Sergio Segura de León, Uniqueness of solutions for some elliptic equations with a quadratic gradient term, ESAIM Control Optim. Calc. Var. 16 (2010), no. 2, 327–336. MR 2654196, DOI 10.1051/cocv:2008072
- Guy Barles, Alain-Philippe Blanc, Christine Georgelin, and Magdalena Kobylanski, Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 3, 381–404. MR 1736522
- Guy Barles and François Murat, Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions, Arch. Rational Mech. Anal. 133 (1995), no. 1, 77–101. MR 1367357, DOI 10.1007/BF00375351
- Guy Barles and Alessio Porretta, Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5 (2006), no. 1, 107–136. MR 2240185
- L. Boccardo, F. Murat, and J.-P. Puel, Existence de solutions faibles pour des équations elliptiques quasi-linéaires à croissance quadratique, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. IV (Paris, 1981/1982) Res. Notes in Math., vol. 84, Pitman, Boston, Mass.-London, 1983, pp. 19–73 (French, with English summary). MR 716511
- L. Boccardo, F. Murat, and J.-P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl. (4) 152 (1988), 183–196 (English, with French and Italian summaries). MR 980979, DOI 10.1007/BF01766148
- L. Boccardo, F. Murat, and J.-P. Puel, $L^\infty$ estimate for some nonlinear elliptic partial differential equations and application to an existence result, SIAM J. Math. Anal. 23 (1992), no. 2, 326–333 (English, with French summary). MR 1147866, DOI 10.1137/0523016
- C. De Coster and L. Jeanjean, Multiplicity result in the non-resonant case for an elliptic problem with critical growth in the gradient, in preparation.
- Vincenzo Ferone and François Murat, Quasilinear problems having quadratic growth in the gradient: an existence result when the source term is small, Équations aux dérivées partielles et applications, Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, 1998, pp. 497–515 (English, with English and French summaries). MR 1648236
- Vincenzo Ferone and François Murat, Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal. 42 (2000), no. 7, Ser. A: Theory Methods, 1309–1326. MR 1780731, DOI 10.1016/S0362-546X(99)00165-0
- Nathalie Grenon, François Murat, and Alessio Porretta, A priori estimates and existence for elliptic equations with gradient dependent terms, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), no. 1, 137–205. MR 3235059
- F. Hamel and E. Russ, Comparison results for semilinear elliptic equations using a new symmetrization method, ArXiv 1401.1726.
- Louis Jeanjean and Boyan Sirakov, Existence and multiplicity for elliptic problems with quadratic growth in the gradient, Comm. Partial Differential Equations 38 (2013), no. 2, 244–264. MR 3009079, DOI 10.1080/03605302.2012.738754
- Jerry L. Kazdan and Richard J. Kramer, Invariant criteria for existence of solutions to second-order quasilinear elliptic equations, Comm. Pure Appl. Math. 31 (1978), no. 5, 619–645. MR 477446, DOI 10.1002/cpa.3160310505
- Adele Manes and Anna Maria Micheletti, Un’estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital. (4) 7 (1973), 285–301 (Italian, with English summary). MR 0344663
- Miguel Ramos, Susanna Terracini, and Christophe Troestler, Superlinear indefinite elliptic problems and Pohožaev type identities, J. Funct. Anal. 159 (1998), no. 2, 596–628. MR 1658097, DOI 10.1006/jfan.1998.3332
- Boyan Sirakov, Solvability of uniformly elliptic fully nonlinear PDE, Arch. Ration. Mech. Anal. 195 (2010), no. 2, 579–607. MR 2592289, DOI 10.1007/s00205-009-0218-9
- Neil S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721–747. MR 226198, DOI 10.1002/cpa.3160200406
Bibliographic Information
- Louis Jeanjean
- Affiliation: Laboratoire de Mathématiques (UMR 6623), Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
- MR Author ID: 318795
- Email: louis.jeanjean@univ-fcomte.fr
- Humberto Ramos Quoirin
- Affiliation: Departamento de Matematica y Computación Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile
- MR Author ID: 876954
- Email: humberto.ramos@usach.cl
- Received by editor(s): July 15, 2014
- Received by editor(s) in revised form: December 25, 2014
- Published electronically: May 28, 2015
- Additional Notes: The second author was supported by the FONDECYT project 11121567. This work has been carried out in the framework of the project NONLOCAL (ANR-14-CE25-0013) funded by the French National Research Agency (ANR)
- Communicated by: Catherine Sulem
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 575-586
- MSC (2010): Primary 35J20, 35J61, 35J91
- DOI: https://doi.org/10.1090/proc12724
- MathSciNet review: 3430835