On Calabi extremal Kähler-Ricci solitons
HTML articles powered by AMS MathViewer
- by Simone Calamai and David Petrecca
- Proc. Amer. Math. Soc. 144 (2016), 813-821
- DOI: https://doi.org/10.1090/proc12725
- Published electronically: June 26, 2015
- PDF | Request permission
Abstract:
In this note we give a characterization of Kähler metrics which are both Calabi extremal and Kähler-Ricci solitons in terms of complex Hessians and the Riemann curvature tensor. We apply it to prove that, under the assumption of positivity of the holomorphic sectional curvature, these metrics are Einstein.References
- Miguel Abreu, Kähler geometry of toric manifolds in symplectic coordinates, Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001) Fields Inst. Commun., vol. 35, Amer. Math. Soc., Providence, RI, 2003, pp. 1–24. MR 1969265
- M. Berger, Sur les variétés d’Einstein compactes, Comptes Rendus de la IIIe Réunion du Groupement des Mathématiciens d’Expression Latine (Namur, 1965) Librairie Universitaire, Louvain, 1966, pp. 35–55 (French). MR 0238226
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- Charles P. Boyer, Krzysztof Galicki, and Santiago R. Simanca, Canonical Sasakian metrics, Comm. Math. Phys. 279 (2008), no. 3, 705–733. MR 2386725, DOI 10.1007/s00220-008-0429-1
- Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 259–290. MR 645743
- Eugenio Calabi, Extremal Kähler metrics. II, Differential geometry and complex analysis, Springer, Berlin, 1985, pp. 95–114.
- Huai-Dong Cao, Existence of gradient Kähler-Ricci solitons, Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994) A K Peters, Wellesley, MA, 1996, pp. 1–16. MR 1417944
- X. X. Chen, S. K. Donaldson, and S. Sun, Kähler-Einstein metrics and stability, Int. Math. Res. Not. IMRN (2014), no. 8, 2119–2125.
- Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci flow: techniques and applications. Part I, Mathematical Surveys and Monographs, vol. 135, American Mathematical Society, Providence, RI, 2007. Geometric aspects. MR 2302600, DOI 10.1090/surv/135
- S. K. Donaldson, Extremal metrics on toric surfaces: a continuity method, J. Differential Geom. 79 (2008), no. 3, 389–432. MR 2433928
- Akito Futaki, Kähler-Einstein metrics and integral invariants, Lecture Notes in Mathematics, vol. 1314, Springer-Verlag, Berlin, 1988. MR 947341, DOI 10.1007/BFb0078084
- Akito Futaki, Hajime Ono, and Guofang Wang, Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J. Differential Geom. 83 (2009), no. 3, 585–635. MR 2581358
- Akito Futaki and Yuji Sano, Lower diameter bounds for compact shrinking Ricci solitons, Asian J. Math. 17 (2013), no. 1, 17–31. MR 3038723, DOI 10.4310/AJM.2013.v17.n1.a2
- P. Gauduchon, Calabi’s extremal Kähler metrics: An elementary introduction, To appear.
- Daniel Guan, Extremal solitons and exponential $C^\infty$ convergence of the modified Calabi flow on certain $\Bbb {C}\textrm {P}^1$ bundles, Pacific J. Math. 233 (2007), no. 1, 91–124. MR 2366370, DOI 10.2140/pjm.2007.233.91
- Richard S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986) Contemp. Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 237–262. MR 954419, DOI 10.1090/conm/071/954419
- Norihito Koiso, On rotationally symmetric Hamilton’s equation for Kähler-Einstein metrics, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, pp. 327–337. MR 1145263, DOI 10.2969/aspm/01810327
- D. Petrecca, On Sasaki-Ricci solitons and their deformations, arXiv:1307.3410 [math.DG], 2013.
- Gang Tian and Xiaohua Zhu, Uniqueness of Kähler-Ricci solitons, Acta Math. 184 (2000), no. 2, 271–305. MR 1768112, DOI 10.1007/BF02392630
- Yôtarô Tsukamoto, On Kählerian manifolds with positive holomorphic sectional curvature, Proc. Japan Acad. 33 (1957), 333–335. MR 90845
- Xu-Jia Wang and Xiaohua Zhu, Kähler-Ricci solitons on toric manifolds with positive first Chern class, Adv. Math. 188 (2004), no. 1, 87–103. MR 2084775, DOI 10.1016/j.aim.2003.09.009
Bibliographic Information
- Simone Calamai
- Affiliation: Dipartmento di Matematica e Informatica “U. Dini”, Università di Firenze, Viale Morgagni 67A, Firenze, Italy
- Email: simocala@gmail.com
- David Petrecca
- Affiliation: Institut für Differentialgeometrie, Leibniz Universität Hannover, Welfengarten 1, 30167, Hannover, Germany
- MR Author ID: 985730
- Email: petrecca@math.uni-hannover.de
- Received by editor(s): May 19, 2014
- Received by editor(s) in revised form: January 20, 2015
- Published electronically: June 26, 2015
- Communicated by: Lei Ni
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 813-821
- MSC (2010): Primary 53C25, 53C55
- DOI: https://doi.org/10.1090/proc12725
- MathSciNet review: 3430856