Remarks on an inequality of Rogers and Shephard
HTML articles powered by AMS MathViewer
- by Apostolos Giannopoulos, Eleftherios Markessinis and Antonis Tsolomitis
- Proc. Amer. Math. Soc. 144 (2016), 763-773
- DOI: https://doi.org/10.1090/proc12776
- Published electronically: October 8, 2015
- PDF | Request permission
Abstract:
A classical inequality of Rogers and Shephard states that if $K$ is a centered convex body of volume $1$ in ${\mathbb R}^n$, then \begin{equation*}1\leqslant g(K,k;F):=\big (\operatorname {vol}_k(P_F(K)) \operatorname {vol}_{n-k}(K\cap F^{\perp })\big )^{1/k} \leqslant {n\choose k}^{1/k}\leqslant \frac {cn}{k}\end{equation*} for every $F\in G_{n,k}$, where $c>0$ is an absolute constant. We show that if $K$ is origin symmetric and isotropic, then, for every $1\leqslant k\leqslant n-1$, a random $F\in G_{n,k}$ satisfies \begin{equation*}c_1L_K^{-1}\sqrt {n/k}\leqslant g(K,k;F)\leqslant c_2\sqrt {n/k}\ (\log n)^2 L_K\end{equation*} with probability greater than $1-e^{-k}$, where $L_K$ is the isotropic constant of $K$ and $c_1,c_2>0$ are absolute constants.References
- Keith Ball, Logarithmically concave functions and sections of convex sets in $\textbf {R}^n$, Studia Math. 88 (1988), no. 1, 69–84. MR 932007, DOI 10.4064/sm-88-1-69-84
- J. Bourgain, J. Lindenstrauss, and V. Milman, Estimates related to Steiner symmetrizations, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 264–273. MR 1008728, DOI 10.1007/BFb0090060
- J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in $\textbf {R}^n$, Invent. Math. 88 (1987), no. 2, 319–340. MR 880954, DOI 10.1007/BF01388911
- Silouanos Brazitikos, Apostolos Giannopoulos, Petros Valettas, and Beatrice-Helen Vritsiou, Geometry of isotropic convex bodies, Mathematical Surveys and Monographs, vol. 196, American Mathematical Society, Providence, RI, 2014. MR 3185453, DOI 10.1090/surv/196
- G. D. Chakerian, Inequalities for the difference body of a convex body, Proc. Amer. Math. Soc. 18 (1967), 879–884. MR 218972, DOI 10.1090/S0002-9939-1967-0218972-8
- Nikos Dafnis and Grigoris Paouris, Estimates for the affine and dual affine quermassintegrals of convex bodies, Illinois J. Math. 56 (2012), no. 4, 1005–1021. MR 3231472
- H. Groemer, On some mean values associated with a randomly selected simplex in a convex set, Pacific J. Math. 45 (1973), 525–533. MR 317369
- E. Milman, On the mean width of isotropic convex bodies and their associated $L_p$-centroid bodies, Int. Math. Research Notices (doi: 10.1093/imrn/rnu040).
- V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed $n$-dimensional space, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 64–104. MR 1008717, DOI 10.1007/BFb0090049
- Vitali D. Milman and Gideon Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. MR 856576
- G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. 16 (2006), no. 5, 1021–1049. MR 2276533, DOI 10.1007/s00039-006-0584-5
- Grigoris Paouris, Small ball probability estimates for log-concave measures, Trans. Amer. Math. Soc. 364 (2012), no. 1, 287–308. MR 2833584, DOI 10.1090/S0002-9947-2011-05411-5
- C. A. Rogers and G. C. Shephard, Convex bodies associated with a given convex body, J. London Math. Soc. 33 (1958), 270–281. MR 101508, DOI 10.1112/jlms/s1-33.3.270
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183
- Jonathan E. Spingarn, An inequality for sections and projections of a convex set, Proc. Amer. Math. Soc. 118 (1993), no. 4, 1219–1224. MR 1184087, DOI 10.1090/S0002-9939-1993-1184087-3
Bibliographic Information
- Apostolos Giannopoulos
- Affiliation: Department of Mathematics, University of Athens, Panepistimioupolis 157 84, Athens, Greece
- Email: apgiannop@math.uoa.gr
- Eleftherios Markessinis
- Affiliation: Department of Mathematics, University of Athens, Panepistimioupolis 157 84, Athens, Greece
- Email: lefteris128@yahoo.gr
- Antonis Tsolomitis
- Affiliation: Department of Mathematics, University of the Aegean, Karlovassi 832 00, Samos, Greece
- MR Author ID: 605888
- Email: antonis.tsolomitis@gmail.com
- Received by editor(s): May 28, 2014
- Received by editor(s) in revised form: November 19, 2014
- Published electronically: October 8, 2015
- Additional Notes: The authors would like to acknowledge support from the program “API$\Sigma$TEIA II – ATOCB – 3566” of the General Secretariat for Research and Technology of Greece.
- Communicated by: Thomas Schlumprecht
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 763-773
- MSC (2010): Primary 52A21; Secondary 46B07, 52A40, 60D05
- DOI: https://doi.org/10.1090/proc12776
- MathSciNet review: 3430852