## The upper and lower bounds on non-real eigenvalues of indefinite Sturm-Liouville problems

HTML articles powered by AMS MathViewer

- by Jiangang Qi, Bing Xie and Shaozhu Chen PDF
- Proc. Amer. Math. Soc.
**144**(2016), 547-559 Request permission

## Abstract:

The present paper gives a priori upper and lower bounds on non-real eigenvalues of regular indefinite Sturm-Liouville problems only under the integrability conditions. More generally, a lower bound on non-real eigenvalues of the self-adjoint operator in Krein space is obtained.## References

- F.V. Atkinson, D. Jabon,
*Indefinite Sturm-Liouville problems*, in “Proceedings of the Focused Research Program on Spectral Theory and Boundary Value Problems”, Vol.I, H. Kaper, M.-K. Kwong, and A. Zettl (Eds.), Argonne National Laboratory, Lemont, IL, USA, 1988, pp. 31–45. - Jussi Behrndt, Shaozhu Chen, Friedrich Philipp, and Jiangang Qi,
*Estimates on the non-real eigenvalues of regular indefinite Sturm-Liouville problems*, Proc. Roy. Soc. Edinburgh Sect. A**144**(2014), no. 6, 1113–1126. MR**3283062**, DOI 10.1017/S0308210513001212 - Jussi Behrndt, Friedrich Philipp, and Carsten Trunk,
*Bounds on the non-real spectrum of differential operators with indefinite weights*, Math. Ann.**357**(2013), no. 1, 185–213. MR**3084346**, DOI 10.1007/s00208-013-0904-7 - Jussi Behrndt, Qutaibeh Katatbeh, and Carsten Trunk,
*Non-real eigenvalues of singular indefinite Sturm-Liouville operators*, Proc. Amer. Math. Soc.**137**(2009), no. 11, 3797–3806. MR**2529889**, DOI 10.1090/S0002-9939-09-09964-X - Paul Binding and Hans Volkmer,
*Eigencurves for two-parameter Sturm-Liouville equations*, SIAM Rev.**38**(1996), no. 1, 27–48. MR**1379040**, DOI 10.1137/1038002 - R. C. Brown and D. B. Hinton,
*Sufficient conditions for weighted inequalities of sum form*, J. Math. Anal. Appl.**112**(1985), no. 2, 563–578. MR**813620**, DOI 10.1016/0022-247X(85)90263-X - Branko Ćurgus and Heinz Langer,
*A Kreĭn space approach to symmetric ordinary differential operators with an indefinite weight function*, J. Differential Equations**79**(1989), no. 1, 31–61. MR**997608**, DOI 10.1016/0022-0396(89)90112-5 - J. Fleckinger and A. B. Mingarelli,
*On the eigenvalues of nondefinite elliptic operators*, Differential equations (Birmingham, Ala., 1983) North-Holland Math. Stud., vol. 92, North-Holland, Amsterdam, 1984, pp. 219–227. MR**799351**, DOI 10.1016/S0304-0208(08)73696-X - Otto Haupt,
*Über eine Methode zum Beweise von Oszillationstheoremen*, Math. Ann.**76**(1914), no. 1, 67–104 (German). MR**1511814**, DOI 10.1007/BF01458673 - Q. Kong, H. Wu, A. Zettl, and M. Möller,
*Indefinite Sturm-Liouville problems*, Proc. Roy. Soc. Edinburgh Sect. A**133**(2003), no. 3, 639–652. MR**1983691**, DOI 10.1017/S0308210500002584 - Angelo B. Mingarelli,
*Indefinite Sturm-Liouville problems*, Ordinary and partial differential equations (Dundee, 1982) Lecture Notes in Math., vol. 964, Springer, Berlin-New York, 1982, pp. 519–528. MR**693136** - Angelo B. Mingarelli,
*A survey of the regular weighted Sturm-Liouville problem—the nondefinite case*, International workshop on applied differential equations (Beijing, 1985) World Sci. Publishing, Singapore, 1986, pp. 109–137. MR**901329** - Jiangang Qi and Shaozhu Chen,
*A priori bounds and existence of non-real eigenvalues of indefinite Sturm-Liouville problems*, J. Spectr. Theory**4**(2014), no. 1, 53–63. MR**3181385**, DOI 10.4171/JST/61 - R. G. D. Richardson,
*Theorems of oscillation for two linear differential equations of the second order with two parameters*, Trans. Amer. Math. Soc.**13**(1912), no. 1, 22–34. MR**1500902**, DOI 10.1090/S0002-9947-1912-1500902-8 - R. G. D. Richardson,
*Contributions to the Study of Oscillation Properties of the Solutions of Linear Differential Equations of the Second Order*, Amer. J. Math.**40**(1918), no. 3, 283–316. MR**1506360**, DOI 10.2307/2370485 - Lawrence Turyn,
*Sturm-Liouville problems with several parameters*, J. Differential Equations**38**(1980), no. 2, 239–259. MR**597803**, DOI 10.1016/0022-0396(80)90007-8 - Bing Xie and Jiangang Qi,
*Non-real eigenvalues of indefinite Sturm-Liouville problems*, J. Differential Equations**255**(2013), no. 8, 2291–2301. MR**3082462**, DOI 10.1016/j.jde.2013.06.013 - Bing Xie, Jiangang Qi, and Shaozhu Chen,
*Non-real eigenvalues of one dimensional $p$-Laplacian with indefinite weight*, Appl. Math. Lett.**48**(2015), 143–149. MR**3348958**, DOI 10.1016/j.aml.2015.04.005 - Anton Zettl,
*Sturm-Liouville theory*, Mathematical Surveys and Monographs, vol. 121, American Mathematical Society, Providence, RI, 2005. MR**2170950**, DOI 10.1090/surv/121

## Additional Information

**Jiangang Qi**- Affiliation: Department of Mathematics, Shandong University, Weihai 264209, People’s Republic of China
- Email: qijiangang@sdu.edu.cn
**Bing Xie**- Affiliation: Department of Mathematics, Shandong University, Weihai 264209, People’s Republic of China
- MR Author ID: 943304
- Email: xiebing@sdu.edu.cn
**Shaozhu Chen**- Affiliation: Department of Mathematics, Shandong University, Weihai 264209, People’s Republic of China
- MR Author ID: 230820
- Email: szchen@sdu.edu.cn
- Received by editor(s): September 28, 2014
- Received by editor(s) in revised form: December 22, 2014
- Published electronically: July 29, 2015
- Additional Notes: The first author was supported in part by the NSF of Shandong Province Grant #ZR2012AM002, and the NSF of China Grants #11471191 and #11101241.

The second author is the corresponding author

The third author was supported in part by the NSF of China Grant #11271229 and the SFPIP of Shandong Province Grant #201301010. - Communicated by: Nimish Shah
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**144**(2016), 547-559 - MSC (2010): Primary 34B24, 34L15; Secondary 47B50
- DOI: https://doi.org/10.1090/proc/12854
- MathSciNet review: 3430833