Mirror symmetry and the classification of orbifold del Pezzo surfaces
HTML articles powered by AMS MathViewer
- by Mohammad Akhtar, Tom Coates, Alessio Corti, Liana Heuberger, Alexander Kasprzyk, Alessandro Oneto, Andrea Petracci, Thomas Prince and Ketil Tveiten
- Proc. Amer. Math. Soc. 144 (2016), 513-527
- DOI: https://doi.org/10.1090/proc/12876
- Published electronically: September 24, 2015
- PDF | Request permission
Abstract:
We state a number of conjectures that together allow one to classify a broad class of del Pezzo surfaces with cyclic quotient singularities using mirror symmetry. We prove our conjectures in the simplest cases. The conjectures relate mutation-equivalence classes of Fano polygons with $\mathbb {Q}$-Gorenstein deformation classes of del Pezzo surfaces.References
- Dan Abramovich, Tom Graber, and Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), no. 5, 1337–1398. MR 2450211, DOI 10.1353/ajm.0.0017
- D. Abramovich and A. Vistoli, Twisted stable maps and quantum cohomology of stacks, Intersection theory and moduli, ICTP Lect. Notes, XIX, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 97–138. MR 2172496
- Mohammad Akhtar, Tom Coates, Sergey Galkin, and Alexander M. Kasprzyk, Minkowski polynomials and mutations, SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), Paper 094, 17. MR 3007265, DOI 10.3842/SIGMA.2012.094
- Mohammad Akhtar and Alexander M. Kasprzyk, Singularity content, arXiv: 1401.5458 [math.AG], 2014.
- Klaus Altmann and Jürgen Hausen, Polyhedral divisors and algebraic torus actions, Math. Ann. 334 (2006), no. 3, 557–607. MR 2207875, DOI 10.1007/s00208-005-0705-8
- Klaus Altmann, Jürgen Hausen, and Hendrik Süss, Gluing affine torus actions via divisorial fans, Transform. Groups 13 (2008), no. 2, 215–242. MR 2426131, DOI 10.1007/s00031-008-9011-3
- Klaus Altmann, Nathan Owen Ilten, Lars Petersen, Hendrik Süß, and Robert Vollmert, The geometry of $T$-varieties, Contributions to algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, pp. 17–69. MR 2975658, DOI 10.4171/114-1/2
- Weimin Chen and Yongbin Ruan, Orbifold Gromov-Witten theory, Orbifolds in mathematics and physics (Madison, WI, 2001) Contemp. Math., vol. 310, Amer. Math. Soc., Providence, RI, 2002, pp. 25–85. MR 1950941, DOI 10.1090/conm/310/05398
- Weimin Chen and Yongbin Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), no. 1, 1–31. MR 2104605, DOI 10.1007/s00220-004-1089-4
- Ionuţ Ciocan-Fontanine and Bumsig Kim, Wall-crossing in genus zero quasimap theory and mirror maps, Algebr. Geom. 1 (2014), no. 4, 400–448. MR 3272909, DOI 10.14231/AG-2014-019
- Tom Coates, Alessio Corti, Sergey Galkin, and Alexander M. Kasprzyk, Quantum periods for $3$-dimensional Fano manifolds, arXiv:1303.3288 [math.AG], 2013.
- Tom Coates, Alessio Corti, Hiroshi Iritani, and Hsian-Hua Tseng, A mirror theorem for toric stacks, arXiv:1310.4163 [math.AG], 2013.
- Tom Coates, Alessio Corti, Hiroshi Iritani, and Hsian-Hua Tseng, Some applications of the mirror theorem for toric stacks, arXiv:1401.2611 [math.AG], 2014.
- Alessio Corti and Liana Heuberger, Del Pezzo surfaces with $\frac 1{3}(1,1)$ points, arXiv:1505.02092 [math.AG], 2015.
- Kento Fujita and Kazunori Yasutake, Classification of log del Pezzo surfaces of index three, arXiv:1401.1283 [math.AG], 2014.
- Sergey Galkin and Alexandr Usnich, Mutations of Potentials, preprint IPMU 10-0100, 2010.
- Daniel Greb, Stefan Kebekus, and Sándor J. Kovács, Extension theorems for differential forms and Bogomolov-Sommese vanishing on log canonical varieties, Compos. Math. 146 (2010), no. 1, 193–219. MR 2581247, DOI 10.1112/S0010437X09004321
- Daniel Greb, Stefan Kebekus, Sándor J. Kovács, and Thomas Peternell, Differential forms on log canonical spaces, Publ. Math. Inst. Hautes Études Sci. 114 (2011), 87–169. MR 2854859, DOI 10.1007/s10240-011-0036-0
- Mark Gross, Paul Hacking, and Seán Keel, Mirror symmetry for log Calabi–Yau surfaces I, arXiv:1106.4977 [math.AG], 2011.
- Mark Gross, Paul Hacking, and Seán Keel, Moduli of surfaces with an anti-canonical cycle, arXiv:1211.6367 [math.AG], 2012.
- Mark Gross and Bernd Siebert, From real affine geometry to complex geometry, Ann. of Math. (2) 174 (2011), no. 3, 1301–1428. MR 2846484, DOI 10.4007/annals.2011.174.3.1
- Nathan Owen Ilten, Mutations of Laurent polynomials and flat families with toric fibers, SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), Paper 047, 7. MR 2958983, DOI 10.3842/SIGMA.2012.047
- Alexander M. Kasprzyk, Benjamin Nill, and Thomas Prince, Minimality and mutation-equivalence of polygons, arXiv:1501.05335 [math.AG], 2015.
- Alexander M. Kasprzyk and Ketil Tveiten, Maximally mutable Laurent polynomials, in preparation.
- János Kollár, Flips, flops, minimal models, etc, Surveys in differential geometry (Cambridge, MA, 1990) Lehigh Univ., Bethlehem, PA, 1991, pp. 113–199. MR 1144527
- J. Kollár and N. I. Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), no. 2, 299–338. MR 922803, DOI 10.1007/BF01389370
- Alessandro Oneto and Andrea Petracci, On the quantum periods of del Pezzo surfaces with $\frac 1{3}(1,1)$ singularities, arXiv:1507.08589 [math.AG], 2015.
- Ketil Tveiten, Period integrals and mutation, arXiv:1501.05095 [math.AG], 2015.
- Jonathan M. Wahl, Elliptic deformations of minimally elliptic singularities, Math. Ann. 253 (1980), no. 3, 241–262. MR 597833, DOI 10.1007/BF0322000
Bibliographic Information
- Mohammad Akhtar
- Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London, SW7 2AZ, United Kingdom
- Email: mohammad.akhtar03@imperial.ac.uk
- Tom Coates
- Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London, SW7 2AZ, United Kingdom
- Email: t.coates@imperial.ac.uk
- Alessio Corti
- Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London, SW7 2AZ, United Kingdom
- MR Author ID: 305725
- ORCID: 0000-0002-9009-0403
- Email: a.corti@imperial.ac.uk
- Liana Heuberger
- Affiliation: Institut Mathematique de Jussieu, 4 Place Jussieu, 75005 Paris, France
- Email: liana.heuberger@imj-prg.fr
- Alexander Kasprzyk
- Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London, SW7 2AZ, United Kingdom
- Email: a.m.kasprzyk@imperial.ac.uk
- Alessandro Oneto
- Affiliation: Department of Mathematics, Stockholm University, SE-106 91, Stockholm, Sweden
- MR Author ID: 1087088
- Email: oneto@math.su.se
- Andrea Petracci
- Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London, SW7 2AZ, United Kingdom
- Email: a.petracci13@imperial.ac.uk
- Thomas Prince
- Affiliation: Department of Mathematics, Imperial College London, 180 Queen’s Gate, London, SW7 2AZ, United Kingdom
- Email: t.prince12@imperial.ac.uk
- Ketil Tveiten
- Affiliation: Department of Mathematics, Stockholm University, SE-106 91, Stockholm, Sweden
- MR Author ID: 1113057
- Email: ktveiten@math.su.se
- Received by editor(s): January 26, 2015
- Published electronically: September 24, 2015
- Additional Notes: This work was supported by EPSRC grant EP/I008128/1 and ERC Starting Investigator Grant 240123.
- Communicated by: Lev Borisov
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 513-527
- MSC (2010): Primary 14S45, 52B20; Secondary 14S10, 14N35
- DOI: https://doi.org/10.1090/proc/12876
- MathSciNet review: 3430830