Degrees of irreducible characters of the symmetric group and exponential growth
HTML articles powered by AMS MathViewer
- by Antonio Giambruno and Sergey Mishchenko
- Proc. Amer. Math. Soc. 144 (2016), 943-953
- DOI: https://doi.org/10.1090/proc/12758
- Published electronically: October 6, 2015
- PDF | Request permission
Abstract:
We consider sequences of degrees of ordinary irreducible $S_n$- characters. We assume that the corresponding Young diagrams have rows and columns bounded by some linear function of $n$ with leading coefficient less than one. We show that any such sequence has at least exponential growth and we compute an explicit bound.References
- A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Adv. in Math. 64 (1987), no. 2, 118–175. MR 884183, DOI 10.1016/0001-8708(87)90007-7
- A. Giambruno, S. Mishchenko, and M. Zaicev, Algebras with intermediate growth of the codimensions, Adv. in Appl. Math. 37 (2006), no. 3, 360–377. MR 2261178, DOI 10.1016/j.aam.2005.02.005
- A. Giambruno, S. Mishchenko, and M. Zaicev, Codimensions of algebras and growth functions, Adv. Math. 217 (2008), no. 3, 1027–1052. MR 2383893, DOI 10.1016/j.aim.2007.07.008
- A. Giambruno and M. Zaicev, Exponential codimension growth of PI algebras: an exact estimate, Adv. Math. 142 (1999), no. 2, 221–243. MR 1680198, DOI 10.1006/aima.1998.1790
- Antonio Giambruno and Mikhail Zaicev, Polynomial identities and asymptotic methods, Mathematical Surveys and Monographs, vol. 122, American Mathematical Society, Providence, RI, 2005. MR 2176105, DOI 10.1090/surv/122
- Antonio Giambruno and Mikhail Zaicev, Proper identities, Lie identities and exponential codimension growth, J. Algebra 320 (2008), no. 5, 1933–1962. MR 2437638, DOI 10.1016/j.jalgebra.2008.06.009
- Gordon James and Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981. With a foreword by P. M. Cohn; With an introduction by Gilbert de B. Robinson. MR 644144
- Olga Malyusheva, Sergey Mishchenko, and Andrey Verevkin, Series of varieties of Lie algebras of different fractional exponents, C. R. Acad. Bulgare Sci. 66 (2013), no. 3, 321–330. MR 3114554, DOI 10.7546/CR-2013-66-3-13101331-2
- S. P. Mishchenko, Lower bounds on the dimensions of irreducible representations of symmetric groups and of the exponents of the exponential of varieties of Lie algebras, Mat. Sb. 187 (1996), no. 1, 83–94 (Russian, with Russian summary); English transl., Sb. Math. 187 (1996), no. 1, 81–92. MR 1380205, DOI 10.1070/SM1996v187n01ABEH000101
- S. P. Mishchenko, A. Regev, and M. V. Zaicev, A characterization of P.I. algebras with bounded multiplicities of the cocharacters, J. Algebra 219 (1999), no. 1, 356–368. MR 1707676, DOI 10.1006/jabr.1998.7916
- Richard Rasala, On the minimal degrees of characters of $S_{n}$, J. Algebra 45 (1977), no. 1, 132–181. MR 427445, DOI 10.1016/0021-8693(77)90366-0
- Amitai Regev, Asymptotic values for degrees associated with strips of Young diagrams, Adv. in Math. 41 (1981), no. 2, 115–136. MR 625890, DOI 10.1016/0001-8708(81)90012-8
- Amitai Regev, Maximal degrees for Young diagrams in the $(k,l)$ hook, European J. Combin. 19 (1998), no. 6, 721–726. MR 1642718, DOI 10.1006/eujc.1997.0200
- Herbert Robbins, A remark on Stirling’s formula, Amer. Math. Monthly 62 (1955), 26–29. MR 69328, DOI 10.2307/2308012
Bibliographic Information
- Antonio Giambruno
- Affiliation: Dipartimento di Matematica e Informatica, Università di Palermo, Via Archirafi 34, 90123 Palermo, Italy
- MR Author ID: 73185
- ORCID: 0000-0002-3422-2539
- Email: antonio.giambruno@unipa.it
- Sergey Mishchenko
- Affiliation: Department of Algebra and Geometric Computations, Ulyanovsk State University, Ulyanovsk 432017, Russia
- MR Author ID: 189236
- Email: mishchenkosp@mail.ru
- Received by editor(s): June 6, 2014
- Received by editor(s) in revised form: February 5, 2015
- Published electronically: October 6, 2015
- Communicated by: Patricia Hersh
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 943-953
- MSC (2010): Primary 20C30, 05A17
- DOI: https://doi.org/10.1090/proc/12758
- MathSciNet review: 3447648