On a twisted Reidemeister torsion
HTML articles powered by AMS MathViewer
- by Ricardo García López
- Proc. Amer. Math. Soc. 144 (2016), 1351-1361
- DOI: https://doi.org/10.1090/proc12779
- Published electronically: July 29, 2015
- PDF | Request permission
Abstract:
Given a finite simplicial complex, a unimodular representation of its fundamental group, and a closed twisted cochain of odd degree, we define a twisted version of the Reidemeister torsion, extending a previous definition of V. Mathai and S. Wu. The main tool is a complex of piecewise smooth currents introduced by J. Dupont in 1986.References
- Camilo Arias Abad and Florian Schätz, Reidemeister torsion for flat superconnections, J. Homotopy Relat. Struct. 9 (2014), no. 2, 579–606. MR 3258695, DOI 10.1007/s40062-013-0052-5
- Michael Atiyah and Graeme Segal, Twisted $K$-theory and cohomology, Inspired by S. S. Chern, Nankai Tracts Math., vol. 11, World Sci. Publ., Hackensack, NJ, 2006, pp. 5–43. MR 2307274, DOI 10.1142/9789812772688_{0}002
- Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304, DOI 10.1007/978-1-4757-3951-0
- Peter Bouwknegt, Alan L. Carey, Varghese Mathai, Michael K. Murray, and Danny Stevenson, Twisted $K$-theory and $K$-theory of bundle gerbes, Comm. Math. Phys. 228 (2002), no. 1, 17–45. MR 1911247, DOI 10.1007/s002200200646
- Johan L. Dupont, A dual simplicial de Rham complex, Algebraic topology—rational homotopy (Louvain-la-Neuve, 1986) Lecture Notes in Math., vol. 1318, Springer, Berlin, 1988, pp. 87–91. MR 952573, DOI 10.1007/BFb0077796
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847, DOI 10.1007/978-1-4613-0105-9
- Daniel S. Freed, Michael J. Hopkins, and Constantin Teleman, Twisted equivariant $K$-theory with complex coefficients, J. Topol. 1 (2008), no. 1, 16–44. MR 2365650, DOI 10.1112/jtopol/jtm001
- Finn F. Knudsen, Determinant functors on exact categories and their extensions to categories of bounded complexes, Michigan Math. J. 50 (2002), no. 2, 407–444. MR 1914072, DOI 10.1307/mmj/1028575741
- Finn Faye Knudsen and David Mumford, The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand. 39 (1976), no. 1, 19–55. MR 437541, DOI 10.7146/math.scand.a-11642
- Weiping Li, Xiugui Liu, and He Wang, On a spectral sequence for twisted cohomologies, Chinese Ann. Math. Ser. B 35 (2014), no. 4, 633–658. MR 3227750, DOI 10.1007/s11401-014-0842-z
- Varghese Mathai and Siye Wu, Analytic torsion for twisted de Rham complexes, J. Differential Geom. 88 (2011), no. 2, 297–332. MR 2838268
- Varghese Mathai and Siye Wu, Analytic torsion of $\Bbb Z_2$-graded elliptic complexes, Noncommutative geometry and global analysis, Contemp. Math., vol. 546, Amer. Math. Soc., Providence, RI, 2011, pp. 199–212. MR 2815136, DOI 10.1090/conm/546/10790
- John McCleary, A user’s guide to spectral sequences, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 58, Cambridge University Press, Cambridge, 2001. MR 1793722
- Werner Müller, Analytic torsion and $R$-torsion for unimodular representations, J. Amer. Math. Soc. 6 (1993), no. 3, 721–753. MR 1189689, DOI 10.1090/S0894-0347-1993-1189689-4
- James R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA, 1984. MR 755006
- R. Rohm and E. Witten, The antisymmetric tensor field in superstring theory, Ann. Physics 170 (1986), no. 2, 454–489. MR 851628, DOI 10.1016/0003-4916(86)90099-0
Bibliographic Information
- Ricardo García López
- Affiliation: Departament d’Àlgebra i Geometria, Universitat de Barcelona, Gran Via, 585, E-08007, Barcelona, Spain
- Email: ricardogarcia@ub.edu
- Received by editor(s): September 1, 2014
- Received by editor(s) in revised form: March 10, 2015
- Published electronically: July 29, 2015
- Communicated by: Varghese Mathai
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 1351-1361
- MSC (2010): Primary 57Q10
- DOI: https://doi.org/10.1090/proc12779
- MathSciNet review: 3447685