An analytic approach to the degree bound in the Nullstellensatz
HTML articles powered by AMS MathViewer
- by Hyun-Kyoung Kwon, Anupan Netyanun and Tavan T. Trent
- Proc. Amer. Math. Soc. 144 (2016), 1145-1152
- DOI: https://doi.org/10.1090/proc/12781
- Published electronically: October 20, 2015
- PDF | Request permission
Abstract:
The Bezout version of Hilbert’s Nullstellensatz states that polynomials without a common zero form the unit ideal. In this paper, we start with a finite number of univariate polynomials and consider the polynomials that show up as a result of the Nullstellensatz. We present a simple analytic method of obtaining a bound for the degrees of these polynomials. Our result recovers W. D. Brownawell’s bound and is consistent with that of J. Kollár in the univariate case. The proof involves some well-known results on the analyticity of complex-valued functions.References
- Mats Andersson, Topics in complex analysis, Universitext, Springer-Verlag, New York, 1997. MR 1419088
- W. Dale Brownawell, Bounds for the degrees in the Nullstellensatz, Ann. of Math. (2) 126 (1987), no. 3, 577–591. MR 916719, DOI 10.2307/1971361
- Lennart Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559. MR 141789, DOI 10.2307/1970375
- Grete Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann. 95 (1926), no. 1, 736–788 (German). MR 1512302, DOI 10.1007/BF01206635
- David Hilbert, Ueber die vollen Invariantensysteme, Math. Ann. 42 (1893), no. 3, 313–373 (German). MR 1510781, DOI 10.1007/BF01444162
- Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
- János Kollár, Sharp effective Nullstellensatz, J. Amer. Math. Soc. 1 (1988), no. 4, 963–975. MR 944576, DOI 10.1090/S0894-0347-1988-0944576-7
- D. W. Masser and G. Wüstholz, Fields of large transcendence degree generated by values of elliptic functions, Invent. Math. 72 (1983), no. 3, 407–464. MR 704399, DOI 10.1007/BF01398396
- R. Mortini and R. Rupp, Corona-type theorems and division in some function algebras on planar domains, The Corona Problem: Fields Institute Communications, Vol. 72 (2014), Springer, New York, 127-151.
- Raghavan Narasimhan, Complex analysis in one variable, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 781130, DOI 10.1007/978-1-4757-1106-6
- J. Ryle and T. T. Trent, A corona theorem for certain subalgebras of $H^\infty (\Bbb D)$ II, Houston J. Math. 38 (2012), no. 4, 1277–1295. MR 3019035, DOI 10.1111/j.1540-6261.1983.tb02295.x
- Martín Sombra, A sparse effective Nullstellensatz, Adv. in Appl. Math. 22 (1999), no. 2, 271–295. MR 1659402, DOI 10.1006/aama.1998.0633
- Mary Lawrence Thompson, TOPICS IN THE IDEAL THEORY OF COMMUTATIVE NOETHERIAN RINGS, ProQuest LLC, Ann Arbor, MI, 1986. Thesis (Ph.D.)–University of Michigan. MR 2634812
- Tavan T. Trent, A new estimate for the vector valued corona problem, J. Funct. Anal. 189 (2002), no. 1, 267–282. MR 1887635, DOI 10.1006/jfan.2001.3842
- Tavan Trent and Xinjun Zhang, A matricial corona theorem, Proc. Amer. Math. Soc. 134 (2006), no. 9, 2549–2558. MR 2213732, DOI 10.1090/S0002-9939-06-08172-X
Bibliographic Information
- Hyun-Kyoung Kwon
- Affiliation: Department of Mathematics, The University of Alabama, Box 870350, Tuscaloosa, Alabama 35401
- MR Author ID: 877951
- Email: hkwon@ua.edu
- Anupan Netyanun
- Affiliation: Department of Mathematics, The University of Alabama, Box 870350, Tuscaloosa, Alabama 35401
- Email: sdiff99@hotmail.com
- Tavan T. Trent
- Affiliation: Department of Mathematics, The University of Alabama, Box 870350, Tuscaloosa, Alabama 35401
- Email: ttrent@ua.edu
- Received by editor(s): October 10, 2014
- Received by editor(s) in revised form: December 20, 2014, and February 15, 2015
- Published electronically: October 20, 2015
- Communicated by: Pamela B. Gorkin
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 1145-1152
- MSC (2010): Primary 30H05; Secondary 30J99, 46J20, 32A65, 30D20, 30H80
- DOI: https://doi.org/10.1090/proc/12781
- MathSciNet review: 3447667