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OPTIMAL EMBEDDING OF MEYER SETS INTO MODEL SETS

JEAN-BAPTISTE AUJOGUE

(Communicated by Yingfei Yi)

Abstract. We give a constructive proof that a repetitive Meyer multiple set
of Rd admits a smallest model multiple set containing it colorwise.

The discovery by Shechtman, et al., in the early 1980’s, of physical materials now
commonly called Quasicrystals triggered an intense effort by mathematicians and
physicists to provide a mathematical description of these materials. From the math-
ematical point of view, a Quasicrystal is simply a set of points in a Euclidean space
Rd (thought of as physical space) admitting a certain long range order, but not nec-
essarily possessing either the translational or rotational symmetry of a traditional
crystal. Various notions of long range order appear in the literature (self-similarity,
having a sharp diffraction pattern, or following specific local matching rules) but in
many ways the most satisfactory is the property of being the projected image of a
higher-dimensional perfect crystal. Point sets having this type of long range order
are the so-called model sets (or cut & project sets) of Rd.

It was Meyer who introduced (in a quite different attempt and even before the
discovery of Quasicrystals) the concept of model sets, in order to provide examples
of point sets which are now commonly called Meyer sets. Meyer sets form a larger
class than that of model sets, and have very interesting properties in relation with
the topic of Quasicrystals (see for instance [7, 8] for its importance in the substi-
tution setting and [12] for the diffraction setting). In addition, these point sets
are characterizable in numerous apparently unrelated ways (see the fairly complete
review of Moody [9]). One of the several existing characterizations is that a point
set of Rd is a Meyer set if and only if it is included in at least one model set. In fact,
any particular Meyer set is contained in a huge collection of model sets, and we
thus want to raise the question of whether a Meyer set admits a smallest model set
containing it. It is the aim of this note to prove that, when the considered Meyer
set is repetitive (see the main text), such model set indeed exists. The existential
result is as follows:

Theorem. For any repetitive Meyer set Λ of Rd there is a unique model set Λ such
that whenever Δ is a model set with Λ ⊆ Δ, then one has

Λ ⊆ Λ ⊆ Δ.
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We provide a constructive proof of this result (see Theorem 3.1) by explicitly
determining the geometric objects, that is, a cut & project scheme and a window,
involved in the construction of Λ. The proof will be given in the slightly more
general formalism of a Meyer multiple set, as it for instance naturally appears in
the setting of substitution point sets.

1. Meyer sets and model sets of Rd

A subset Λ of Rd is called a Delone set if it consists of a uniformly discrete
collection of points, that is, it admits a uniform separation distance between any
two of its points, and if it is relatively dense, meaning that any vector of Rd is at
uniformly bounded distance from some point of Λ. A Delone set is called a Meyer
set, or is said to have the Meyer property, if there is a finite subset F of Rd such
that

Λ− Λ ⊆ Λ+ F.

Finally, a Meyer multiple set is a finite collection Λ = (Λi)i∈I of Meyer sets
where the support S(Λ) :=

⋃
i∈I Λi is again a Meyer set. We will often call such

an object a point pattern in the text. There are several very interesting equivalent
formulations of the Meyer property which can be found in [9]. The hull of a Meyer
multiple set Λ consists of the collection XΛ of all Meyer multiple sets which locally
resemble Λ:

XΛ :=
{
Λ ⊂ Rd | ∀R > 0 ∃ t ∈ Rd : Λi ∩BR = (Λi − t) ∩BR ∀ i ∈ I

}

where BR is the Euclidean ball of radius R (or Euclidean R-ball). This collection
is closed under the shift action on Rd by Λ.t := (Λi − t)i∈I , and admits a natu-
ral topology, the so-called local topology for which it is a compact space with
continuous action of Rd ([6, 11]). Hence the Meyer multiple set Λ gives rise to a
dynamical system (XΛ,R

d).
We call a Meyer multiple set Λ repetitive whenever the dynamical system

(XΛ,R
d) is minimal. There is an intrinsic characterization of repetitivity on Λ

([5]) which will be of no use in our setting. There are subsets of XΛ which are of
special interest, the so-called canonical transversals

Ξi := {Λ ∈ XΛ | 0 ∈ Λi} for i ∈ I, Ξ :=
⋃
i∈I

Ξi = {Λ ∈ XΛ | 0 ∈ S(Λ)} .

We shall moreover consider another topology on XΛ which we call the combi-
natorial topology, obtained from a uniformity for which a basis is given by

UR := {(Λ,Λ′) ∈ XΛ × XΛ | Λi ∩BR = Λ′
i ∩BR ∀ i ∈ I}

for all R > 0. This topology is always strictly finer than the usual local topology,
and endowing it on XΛ makes each transversal above a compact-open subset. Open-
ness of the transversals for this topology is quite clear from the definition of the
uniformity, whereas compactness is guaranteed by a consequence of the Meyer prop-
erty called finite local complexity [1, 4]. The Meyer multiple set Λ is repetitive
if and only if the Rd-action on XΛ endowed with this new topology is minimal.

We shall now focus on a particular class of point patterns of Rd: Suppose that we
are given some lattice inside a space of the form H×Rd. Then one can form a point
pattern by projecting along Rd the lattice points whose projection along H belongs
to some (nice) domain W of H. The resulting point pattern is a so-called model
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set of Rd. More precisely, we consider a triple (H,Γ, sH) called a cut & project
scheme (or shortly CPS), where H is a locally compact σ-compact Abelian group
(LCA group for short), Γ a countable subgroup of Rd and

sH : Γ �� H

a group morphism with range sH(Γ) dense in H, and furthermore with a graph
G(sH) :=

{
(sH(γ), γ) ∈ H × Rd | γ ∈ Γ

}
that is a lattice, that is, a discrete and co-

compact subgroup of H ×Rd. The LCA group H is commonly called the internal
space, the subgroup Γ of Rd the structure group of the CPS, and the morphism
sH the *-map of the CPS. A model set issued from this CPS is then a point pattern
of Rd obtained as

PH(W ) := {γ ∈ Γ | sH(γ) ∈ W}
where W is a compact topologically regular subset of H, that is, a compact set
which is the closure of its interior W̊ in H. A model multiple set is a finite collection
(P(Wi))i∈I of model sets issuing from a common CPS but with possibly different
sets Wi. The finite collection (Wi)i∈I of compact topologically regular subsets used
to form a model multiple set, or the set W in case we deal with a single model set,
is called a window. The formal definition of a model multiple set now comes as
follows:

Definition 1.1. A model multiple set Λ = (Λi)i∈I is a point pattern such that
there exists a CPS (H,Γ, sH) and a window {Wi}i∈I in H such that

PH(
◦
Wi) ⊆ Λi ⊆ PH(Wi).

In case the window admits boundary sets ∂Wi of null Haar measure in H the
resulting model multiple sets are said to be regular. We are not assuming this here.
It is a standard fact ([10]) that a model multiple set is always a Meyer multiple set.

2. A general construction

Let us consider throughout this section a fixed Meyer multiple set Λ with hull
XΛ. One can then provide a “model set-like” description of Λ as follows:

Let Γ be the subgroup of Rd generated by the support of Λ. The subset S(Λ)
is Meyer and thus the group Γ is finitely generated (see [5]), and in particular
countable. Consider the collection of point patterns in the hull XΛ having support
contained into Γ,

ΞΓ := {Λ ∈ XΛ | S(Λ) ⊆ Γ} ;

this collection is equipped with combinatorial topology. The topological space ΞΓ

thus defined contains the transversal Ξ, and in particular all the colored transversals
Ξi with i ∈ I: For, if we are given any Λ ∈ Ξ, then 0 ∈ S(Λ) and thus any γ ∈ S(Λ)
provides a two-point pattern {0, γ} of S(Λ). As any bounded pattern of Λ appears
somewhere in Λ there must be some vector t ∈ Rd with {t, t+ γ} ⊂ S(Λ). In
particular γ lies in the difference set S(Λ) − S(Λ), which in turn is contained in
Γ − Γ = Γ. This establishes that S(Λ) ⊆ Γ, which shows that Λ ∈ ΞΓ whenever
Λ ∈ Ξ, as desired.

The space ΞΓ with the combinatorial topology is locally compact σ-compact [1],
and is in fact a totally disconnected space. It is clear that if Λ ∈ ΞΓ, then Λ−γ ∈ ΞΓ

whenever γ ∈ Γ, providing a shift action of Γ. It is not difficult to show that, since
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Λ is assumed to be repetitive, the Γ-action on the space ΞΓ with the combinatorial
topology is minimal. It is also clear that the point pattern Λ is itself an element of
ΞΓ, as are all of its Γ-translates. Therefore we have a locally compact σ-compact
space ΞΓ, the countable subgroup Γ of Rd and moreover the mapping

Γ � γ � �� sΞΓ(γ) := Λ− γ ∈ ΞΓ .

We may interpret the triple (ΞΓ, Γ, sΞΓ) as a “CPS” associated with Λ, having ΞΓ

as “internal space”, Γ as “structure group” and sΞΓ as “∗-map”. In addition, the
transversals Ξi, i ∈ I, are compact and open subsets of ΞΓ and thus topologically
regular, giving a “window” {Ξi}i∈I in this space. The point pattern Λ now appears

as a “model set” associated with (ΞΓ, Γ, sΞΓ) and {Ξi}i∈I in the sense that for each
i ∈ I one has

Λi = PΞΓ(Ξi) := {γ ∈ Γ | sΞΓ(γ) ∈ Ξi} .
It is in fact possible to derive a true CPS and window from what is given above,

and the key ingredient here is a certain relation on XΛ called, after its introduction
in [2], the strong regional proximality relation: Two point patterns Λ,Λ′ ∈ XΛ

are strongly regionally proximal, briefly denoted Λ ∼srp Λ′, if for each radius R
there are Λ1,Λ2 and t ∈ Rd such that colorwise

Λ ∩BR = Λ1 ∩BR,

Λ′ ∩BR = Λ2 ∩BR,

(Λ1 − t) ∩BR = (Λ2 − t) ∩BR.

It is true that for a repetitive Meyer multiple set Λ this relation is a closed Rd-
invariant equivalence relation on XΛ, something by no means obvious. In this case
this relation is related with spectral features, as two point patterns are strongly
regionally proximal if and only if they are undistinguished by the continuous eigen-
functions of the dynamical system (XΛ,R

d); see [2] for details.

Proposition 2.1 ([1], CPS construction). Let Λ be a repetitive Meyer multiple set
of Rd, and let Γ be the countable subgroup of Rd generated by its support S(Λ).
Then:

(i) If Λ ∈ ΞΓ, then its strong regional proximality class [Λ]srp is contained in ΞΓ.
(ii) The quotient space H := ΞΓ� ∼srp with quotient topology admits an LCA

group structure, such that one has a group morphism

Γ � γ � �� sH(γ) := [Λ+ γ]srp ∈ H.

The above proposition shows that the triple (ΞΓ, Γ, sΞΓ) we considered earlier
yields, by modding out the strong regional proximality relation, a new triple
(H, Γ, sH), with H an LCA group, Γ a countable subgroup of Rd and sH a group
morphism from the latter into the former. The following theorem provides a CPS
and window to the Meyer multiple set Λ which will be of central importance for
our concern:

Theorem 2.2 ([1]). Let Λ be a repetitive Meyer multiple set of Rd, and let Γ be
the countable subgroup of Rd generated by its support S(Λ). Then:

(i) The triple (H, Γ, sH) is a CPS.
(ii) Each subset Wi := − [Ξi]srp of H is compact and topologically regular in H

and thus forms a window {Wi}i∈I in H.
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(iii) One has for each i ∈ I that Λi ⊆ PH(Wi) =
⋃

Λ∈[Λ]srp

Λi.

3. Statement and proof of the theorem

What we aim to prove in this note is the following:

Theorem 3.1. Let Λ be a repetitive Meyer multiple set of Rd, and consider the
associated CPS (H, Γ, sH) and window (Wi)i∈I provided by Theorem 2.2. Then the
point pattern colorwise given by

Λi := PH(W̊i) ∪ Λi

is a model multiple set in the sense of Definition 1.1, and has the property that
whenever Δ is a model multiple set with Λ ⊆ Δ colorwise, then one has colorwise

Λ ⊆ Λ ⊆ Δ.

The fact that Λ is a model multiple set follows from part (iii) of Theorem 2.1,

as it gives PH(W̊i) ⊆ Λi ⊆ PH(Wi). The subsequent part of this note is devoted
to the proof of the above theorem. Let us begin by supposing that Δ is a model
multiple set with Λ ⊆ Δ colorwise. Therefore there is a CPS (H1,Γ1, sH1

) and a
window

(
W 1

i

)
i∈I

in H1 such that according to Definition 1.1

PH1(W̊ 1
i ) ⊆ Δi ⊆ PH1(W 1

i ).

We now make the two following observations: First the group Γ generated by
the support of Λ is contained in Γ1, and second each set sH1(Λi) is contained in the
compact set W 1

i and thus has compact closure V 1
i in H1.

Step 1: Factoring out the redundancies. We shall now modify the CPS (H1,Γ1, sH1)
by modding out the redundancy subgroup

R :=
{
w ∈ H1 |V 1

i + w = V 1
i ∀ i ∈ I

}

associated with the collection (V 1
i )i∈I of compact subsets in H1. This provides an

LCA group H2 := H1�R and a new CPS (H2,Γ2, sH2) where the structure group
Γ2 := Γ1 remains unchanged, with ∗-map sH2 given by

Γ2 � γ � �� sH2(γ) := [sH1(γ)]R ∈ H2 .(3.1)

The proof that it forms an actual CPS comes from the fact that R is compact;
see also the discussion of [6], Section 5 therein. Each compact subset V 2

i := [V 1
i ]R

is equal to the closure of sH2(Λi) in H2, and the collection (V 2
i )i∈I forms an irre-

dundant family in H2.

Step 2: Shrinking the structure group. The second operation we wish to apply is
shrinking the structure group Γ we are considering to the group Γ generated by the
support of Λ. Since the structure group Γ2 contains Γ we shall consider the LCA
group H to be the closure of sH2(Γ) in H2. Restricting the group morphism sH2

on Γ yields a group morphism

Γ
sH �� H .

Moreover, each set V 2
i being the closure of sH2(Λi) in H2 is contained in H and

we shall rewrite each as Vi. It is clear that each Vi is compact and the closure of
sH(Λi) in H.



1282 JEAN-BAPTISTE AUJOGUE

Proposition 3.2. The triple (H, Γ, sH) forms a CPS.

Proof. By construction the group morphism sH has a dense range sH(Γ) in the
LCA group H. Moreover, sH has a uniformly discrete graph G(sH) in H×Rd since
G(sH) ⊆ G(sH2) which is uniformly discrete inH2×Rd. What thus remains to show
is the relative density of G(sH) in H × Rd. Let i ∈ I be chosen arbitrarily. Then
the closure Vi of sH(Λi) is compact in H and therefore one has an open relatively
compact subset U of H with Vi ⊆ U . The point pattern Λi is relatively dense in
Rd, with radius R of relative density. Then the graph of sH obeys

G(sH) + (U − U)×BR = H × Rd

where BR is the Euclidean R-ball and (U − U) × BR is relatively compact in
H×Rd. For, given (w, t) ∈ H×Rd, one has, by density of sH(Γ) in H, a γ ∈ Γ with
w−sH(γ) ∈ U . Since Λi isR-relatively dense there is a γ′ ∈ Λi with γ′ ∈ (t−γ)+BR.
As γ′ lies in Λi, we have sH(γ′) ∈ U . Now let γ0 := γ + γ′ ∈ Γ + Λi = Γ.
Then w ∈ sH(γ) + U ⊂ sH(γ) + sH(γ′) + U − U = sH(γ0) + U − U whereas
t ∈ γ′ + γ−BR = γ0+BR. Hence (w, t) ∈ (sH(γ0), γ0)+ (U −U)×BR, as desired.
This shows the relative density of G(sH) so the proof is complete. �

Therefore we get a CPS (H, Γ, sH) for which the sets sH(Λi) have compact closure
Vi in H, and moreover such that (Vi)i∈I forms an irredundant family in H. It is in
fact true that the compact sets Vi are topologically regular in H, something which
will be deduced in the next step of our proof.

Step 3: Connection with the CPS (H, Γ, sH). The following key proposition estab-
lishes a connection between the CPS (H, Γ, sH) we are considering and the one
provided by Theorem 2.2:

Proposition 3.3. Suppose we have a CPS (H, Γ, sH) such that the closures Vi of
the sets sH(Λi) are compact in H and form an irredundant family (Vi)i∈I in H.
Then there exists a continuous, onto and open group morphism

θ : H �� H

with sH = θ ◦ sH on the structure group Γ. Moreover the family (Vi)i∈I forms a
window in H such that θ(Wi) = Vi for each i ∈ I.

Proof of Proposition 3.3. The proof of this proposition will be obtained after a
series of four lemmas. Considering the group Γ, let

ΞΓ := {Λ ∈ XΛ | S(Λ) ⊆ Γ}
be equipped with the combinatorial topology. The lemma given below is an adap-
tation to the multiple set setting of a result of Schlottmann [11], Lemma 4.1 there:

Lemma 3.4. Each Λ ∈ ΞΓ defines a unique element wΛ ∈ H through

{wΛ} =
⋂
i∈I

⋂
γ∈Λi

sH(γ)− Vi.

Proof. For each Λ ∈ ΞΓ denote Vi(Λ) := sH(Λi)
H
. With respect to this notation

the compact sets Vi are equal to Vi(Λ). Then given any Λ ∈ ΞΓ, one has for w ∈ H
an equivalence of conditions

w ∈
⋂
i∈I

⋂
γ∈Λi

sH(γ)− Vi ⇐⇒ Vi(Λ) ⊆ Vi + w ∀ i ∈ I.
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This is true since, as obviously w ∈ sH(γ)−Vi if and only if sH(γ) ∈ Vi+w, the left
hand condition is equivalent to having sH(Λi) ⊆ Vi + w for each i ∈ I; this latter
condition being equivalent by taking closure with the right hand condition above.
Let us show that any Λ ∈ ΞΓ admits an element wΛ ∈ H where these equivalent
conditions hold:

From repetitivity of Λ there exists for any Λ ∈ ΞΓ a sequence (γn)n in Γ such
that Λ+γn converges to Λ with respect to the combinatorial topology on ΞΓ. Thus
for each γ ∈ Λi we eventually get γ ∈ Λ + γn, ensuring that sH(γ) ∈ Vi + sH(γn)
eventually. Picking one of these γ, we get that the sequence sH(γn) lies in each
compact set sH(γ)−Vi eventually, and thus accumulates at some element wΛ ∈ H.
We can suppose after possibly extracting a subsequence that sH(γn) converges to
wΛ in H. The latter must satisfy sH(γ) ∈ Vi + wΛ for each γ ∈ Λi and each i ∈ I,
as desired.

Such an element wΛ is unique: from the above we know that the set Vi(Λ),
being contained in some translate of the compact set Vi, is compact in H. Then
interchanging the roles of Λ and Λ in the previous argument shows that there equally
exists some w′

Λ ∈ H with Vi ⊆ Vi(Λ) + w′
Λ ∀ i ∈ I. This yields Vi ⊆ Vi(Λ) + w′

Λ ⊆
Vi + wΛ + w′

Λ with Vi compact, which forces Vi = Vi(Λ) + wΛ + w′
Λ ∀ i ∈ I. From

the irredundancy assumption on the family (Vi)i∈I one gets wΛ = −w′
Λ, and this

in turns gives that Vi(Λ) = Vi + wΛ for each i ∈ I. Such an equality, again from
irredundancy of the family (Vi)i∈I , can be satisfied by at most one element wΛ,
giving unicity and thus the proof. �

Therefore whenever we are given a CPS as stated in Proposition 3.3, we get a
mapping ω : ΞΓ −→ H with ω(Λ) := wΛ given by the previous lemma. Each wΛ is

also obtained as the unique solution to the equation sH(Λi)
H

= Vi + wΛ.

Lemma 3.5. The mapping ω : ΞΓ �� H is uniformly continuous, and satisfies
the Γ-equivariance condition ω(Λ− γ) = ω(Λ)− sH(γ) where Λ ∈ ΞΓ and γ ∈ Γ.

Proof. The Γ-equivariance of ω is direct: For, if Λ ∈ ΞΓ and γ0 ∈ Γ, then

wΛ−γ0
=

⎡
⎣⋂
i∈I

⋂
γ∈Λi−γ0

sH(γ)− Vi

⎤
⎦

=

⎡
⎣⋂
i∈I

⋂
γ′∈Λi

sH(γ′)− Vi

⎤
⎦− sH(γ0) = wΛ − sH(γ0).

Let us show the continuity of the mapping ω: Given a neighborhood U of 0 in
H, and any Λ ∈ ΞΓ, since wΛ satisfies the intersection of Lemma 3.4 there exists a
radius RΛ such that ⎡

⎣⋂
i∈I

⋂
γ∈Λi∩BRΛ

sH(γ)− Vi

⎤
⎦ ⊆ wΛ + U.

Now for any other Λ′ ∈ ΞΓ coinciding with Λ on the ball BRΛ
one has in turn

wΛ′ ∈

⎡
⎣⋂
i∈I

⋂
γ∈Λ′

i∩BRΛ

sH(γ)− Vi

⎤
⎦ =

⎡
⎣⋂
i∈I

⋂
γ∈Λi∩BRΛ

sH(γ)− Vi

⎤
⎦ ⊆ wΛ + U
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and thus wΛ − wΛ′ ∈ U . This shows that ω is continuous at any Λ ∈ ΞΓ. To
see that ω is in fact uniformly continuous on ΞΓ observe first that this is the case
on the compact subset Ξ, that is, for any neighborhood U of 0 in H there is a
radius RU such that whenever Λ,Λ′ ∈ Ξ coincide on the Euclidean RU -ball, then
wΛ − wΛ′ ∈ U . Suppose then that Λ,Λ′ ∈ ΞΓ coincide on the Euclidean RU + R0-
ball, with R0 some radius of relative density for point patterns in XΛ: Then one
can find some element γ ∈ Γ in the Euclidean R0-ball which simultaneously lies
in Λ,Λ′, and thus Λ − γ,Λ′ − γ lie into Ξ and moreover agree on the Euclidean
RU -ball. This ensures that wΛ−γ − wΛ′−γ ∈ U , and since the mapping ω satisfies
the equivariance condition wΛ−γ = wΛ−sH(γ) one finally gets wΛ−wΛ′ ∈ U . This
shows the uniform continuity of ω, concluding the proof. �

Lemma 3.6. The mapping ω factors as ΞΓ
[.]srp

�� H
θ �� H where [.]srp is the

quotient map under the strong regional proximality relation and θ is a continuous,
onto and open group morphism with sH = θ ◦ sH.

Proof. Recall that [Λ]srp ⊆ ΞΓ whenever Λ ∈ ΞΓ by Proposition 2.1. The uniform
continuity of the mapping ω shown in the previous lemma ensures that whenever
[Λ]srp = [Λ′]srp, then wΛ = wΛ′ : For, if [Λ]srp = [Λ′]srp, then for each radius R one
can find Λ1,Λ2 and t ∈ Rd; this latter may be taken to lie in the relatively dense
subgroup Γ, such that

Λ ∩BR = Λ1 ∩BR,

Λ′ ∩BR = Λ2 ∩BR,

(Λ1 − t) ∩BR = (Λ2 − t) ∩BR.

One easily shows that the point patterns Λ1 and Λ2 must be supported on Γ, so
that Λ1,Λ2 ∈ ΞΓ and thus wΛ1

and wΛ2
are well defined elements in H. For each

neighborhood U of 0 in H there is an R such that the three equalities above give

wΛ − wΛ1
∈ U,

wΛ′ − wΛ2
∈ U,

wΛ1
− wΛ2

= wΛ1−t − wΛ2−t ∈ U,

which yields wΛ − wΛ′ ∈ U − U + U for any U . This forces wΛ = wΛ′ , as desired.

Hence the mapping ω factors as ΞΓ
[.]srp

�� H
θ �� H where [.]srp is the quo-

tient map under the strong regional proximality relation. By definition of the
quotient topology on H the mapping θ of this factorization is continuous. Now by
definition of sH one has θ(sH(γ)) = θ([Λ+γ]srp) = ω(Λ+γ) = ω(Λ)+sH(γ) = sH(γ),
which yields sH = θ ◦ sH. As both H and H are LCA group completions of the
group Γ the mapping θ must in turn be a group morphism. Finally, θ must be onto
and open from Lemma 4.2. �
Lemma 3.7. Each Vi is topologically regular in H, with θ(Wi) = Vi for each i ∈ I.

Proof. Let us show that θ(Wi) = Vi for each i ∈ I: From point (iii) of Theorem 2.2
we have Wi = −[Ξi]srp in H, and consequently θ(Wi) = −ω(Ξi). By repetitivity of
Λ the set {Λ− γ |γ ∈ Λi} is dense in the transversal Ξi, and because ω is continuous
one gets that ω(Ξi) is equal to the closure in H of ω({Λ− γ |γ ∈ Λi}). However
ω(Λ− γ) = −sH(γ) by Lemma 3.5 so the latter is nothing but the closure in H of
−sH(Λi), which is exactly −Vi. This gives Vi = −ω(Ξi) = θ(Wi), as desired. Now
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using this, together with the fact that θ is an open map from the previous lemma,

we obtain θ(W̊i) ⊆ V̊i for each i ∈ I. Since Wi is the closure of its interior, θ(W̊i)
must be dense in θ(Wi) = Vi. This ensures that each Vi is the closure of its interior,
hence topologically regular in H. �

These four lemmas settle the proof of Proposition 3.3. �

Step 4: Concluding argument. We shall now connect the model multiple set Λ
stated at the beginning of this proof with Δ:

First one has for each i ∈ I the inclusion of PH(W̊i) into PH(V̊i): For, as the
morphism θ : H −→ H provided by Proposition 3.3 is open and maps Wi onto Vi,

one has θ(W̊i) ⊆ V̊i. Now as sH = θ ◦ sH we get that

γ ∈ PH(W̊i) ⇐⇒ sH(γ) ∈ W̊i =⇒ sH(γ) ∈ V̊i ⇐⇒ γ ∈ PH(V̊i).

Next we shall connect the model multiple set (PH(V̊i))i∈I with CPS (H2,Γ2, sH2)
and collection (V 2

i )i∈I : The pair of CPS (H, Γ, sH) and (H2,Γ2, sH2) is such that
H ⊆ H2, Γ ⊆ Γ2, and the ∗-map sH is the restriction of sH2

on Γ, and thus one can
apply Proposition 4.3 to get that the interior of each Vi in H is equal to the interior
of V 2

i relative to the larger group H2. This in turn yields that PH(V̊i) ⊆ PH2(V̊ 2
i ).

Now the CPS (H2,Γ2, sH2) with collection (V 2
i )i∈i is connected with the CPS

(H1,Γ1, sH1) with collection (V 1
i )i∈I by the group morphism [.]R : H1 −→ H2

modding out the redundancy subgroup R of the family (V 1
i )i∈I by sH2 = [.]R ◦ sH1

(see formula (3.1) in Step 1 of this proof) and [.]−1
R

(V 2
i ) = V 1

i . It follows that

γ∈PH2(V̊ 2
i )⇐⇒sH2(γ)∈ V̊ 2

i =⇒sH1(γ)∈ [.]−1
R

(V̊ 2
i ) ⊆ V̊ 1

i ⇐⇒γ∈PH1(V̊ 1
i ).

Now each set V 1
i is included into the compact set W 1

i and thus PH1(V̊ 1
i ) ⊆

PH1(W̊ 1
i ) for each i ∈ I. Above all, one gets

Λi ⊆ Λi = PH(W̊i) ∪ Λi

⊆ PH(V̊i) ∪ Λi

⊆ PH2(V̊ 2
i ) ∪ Λi

⊆ PH1(V̊ 1
i ) ∪ Λi

⊆ PH1(W̊ 1
i ) ∪ Λi ⊆ Δi

whenever i ∈ I, concluding the proof of Theorem 3.1.

�

4. On morphisms between CPS

In the course of the proof of Theorem 3.1 we used general facts about CPS,
which we prove in this dedicated section. Let us first recall the following general
fact.

Theorem 4.1 ([3], Open Mapping Theorem for locally compact groups). Let θ :
G1 −→ G2 be a group morphism between locally compact groups. If θ is surjective
and G1 is σ-compact, then θ is an open map.

The general theorem above will be used to prove two openness properties for
CPS, namely the lemma just below which was invoked in the proof of Lemma 3.6,
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and a proposition given next which was invoked at the final step of our proof of
Theorem 3.1.

Lemma 4.2. Let (H1,Γ, s1) and (H2,Γ, s2) be two CPS with the same structure
group Γ. Suppose we have a continuous group morphism θ : H1 −→ H2 such that
s2 = θ ◦ s1 on Γ. Then θ is onto and open.

Proof. The continuous morphism θ provides a commutative diagram

H1 × Rd

[.]Γ

��

θ×id
�� H2 × Rd

[.]Γ

��[
H1 × Rd

]
Γ

θ̃ ��
[
H2 × Rd

]
Γ

where the vertical arrows are the quotient morphisms obtained by modding out
the subgroups consisting of the graphs of the ∗-maps s1 and s2 respectively, and
the lower arrow is a continuous morphism given by θ̃([w, t]Γ) := [θ(w), t]Γ. Now θ̃
must be onto: indeed its domain

[
H1 × Rd

]
Γ
is a compact space and has a range

in
[
H2 × Rd

]
Γ
containing at least

[
{0} × Rd

]
Γ
. But this latter is dense since the

∗-map s2 has by assumption a dense range s2(Γ) in H2. Therefore the map θ̃ has
a range which is both compact and dense in

[
H2 × Rd

]
Γ
, and thus is onto.

Now we prove the surjectivity of θ: If w ∈ H2 is given, then one has [w, 0]Γ ∈[
H2 × Rd

]
Γ

which admits a preimage under θ̃, that is, there are w̃ ∈ H1 and

t ∈ Rd such that θ̃([w̃, t]Γ) = [w, 0]Γ. Hence there exists some γ ∈ Γ such that
(θ(w̃) + s2(γ), t+ γ) = (w, 0) in H2 × Rd. Thus the element w′ := w̃ + s1(γ) ∈ H1

is so that θ(w′) = θ(w̃) + s2(γ) = w, proving the surjectivity. The openness of θ
follows from the open mapping theorem (Theorem 4.1), finishing the proof. �

Proposition 4.3. Let (H1,Γ1, sH1
) and (H2,Γ2, sH2

) be two CPS such that Γ1 ⊆
Γ2, and such that there is a continuous group morphism θ : H1 −→ H2 with sH2

=
θ ◦ sH1

on Γ1. Then θ is open and θ(H1) is an open subgroup of H2.

Proof. Consider Γ2 endowed with the discrete topology, and let H1 ⊕Γ1
Γ2 be the

quotient of the LCA groupH1⊕Γ2 by the discrete subgroup {(−sH1
(γ), γ) | γ ∈ Γ1}.

There is a well-defined group morphism

Γ2 � γ � sH1⊕Γ1
Γ2

�� [0, γ]Γ1
∈ H1 ⊕Γ1

Γ2 .

Observe that in case Γ1 = Γ2, then H1 ⊕Γ1
Γ2 = H1 and sH1⊕ Γ1

Γ2
= sH1

. In
the general case, one has a continuous group morphism

Θ : H1 ⊕Γ1
Γ2 −→ H2, Θ([w, γ]Γ1

) := θ(w) + sH2
(γ)

satisfying sH2
= Θ ◦ sH1⊕Γ1

Γ2
on Γ2. Now the triple (H1 ⊕Γ1

Γ2,Γ2, sH1⊕Γ1
Γ2
)

obtained is in fact a CPS. For, first of all, the group morphism sH1⊕Γ1
Γ2

has dense
range since given (w, γ) ∈ H1⊕Γ2 one has a sequence (γn)n ⊂ Γ1 such that sH1

(γn)
converges to w in H1, and thus sH1⊕Γ1

Γ2
(γ + γn) = [0, γ + γn]Γ1

= [sH(γn), γ]Γ1

converges to [w, γ]Γ1
in H1 ⊕Γ1

Γ2. Second, the graph G(sH1⊕Γ1
Γ2
) is uniformly

discrete in H1 ⊕Γ1
Γ2 × Rd since one has an obvious continuous group morphism

Θ× id : H1 ⊕Γ1
Γ2 × Rd −→ H2 × Rd
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mapping G(sH1⊕Γ1
Γ2
) onto the uniformly discrete subgroup G(sH2

) of H2 × Rd.

And finally, G(sH1⊕Γ1
Γ2
) is relatively dense in H1 ⊕Γ1

Γ2 × Rd since whenever

K ⊂ H1 and K ′ ⊂ Rd are compact subsets with G(sH1
) +K ×K ′ = H1 ×Rd, then

[K, 0]Γ1
×K ′ is compact with

G(sH1⊕Γ1
Γ2
) + [K, 0]Γ1

×K ′ = H1 ⊕Γ1
Γ2 × Rd.

For, if (w, γ, t) is given, then there is γ′ ∈ Γ1 with (w, t−γ) ∈ (K+ sH(γ′),K ′+
γ′), and thus considering γ0 := γ + γ′ ∈ Γ2 provides on the one hand

[w, γ]Γ1
= [w − sH(γ′), γ + γ′]Γ1

= [w − sH(γ′), γ0]Γ1
∈ [K, γ0]Γ1

= [0, γ0]Γ1
+ [K, 0]Γ1

and on the other hand gives t ∈ γ + γ′ +K ′ = γ0 +K ′, yielding

([w, γ]Γ1
, t) ∈ ([0, γ0]Γ1

, γ0) + [K, 0]Γ1
×K ′

= (sH1⊕Γ1
Γ2
(γ0), γ0) + [K, 0]Γ1

×K ′

showing the relative density of G(sH1⊕Γ1
Γ2
) in H1 ⊕Γ1

Γ2 × Rd. Therefore we
have a new CPS (H1 ⊕Γ1

Γ2,Γ2, sH1⊕Γ1
Γ2
) with a continous group morphism Θ :

H1 ⊕Γ1
Γ2 −→ H2 with sH2

= Θ ◦ sH1⊕ Γ1
Γ2

on Γ2. Lemma 4.2 guarantees that Θ
is an open map, that is, the image of any open subset of H1 ⊕Γ1

Γ2 is open in H2.
However the copy [H1, 0]Γ1

of H1 is open in H1 ⊕Γ1
Γ2: For it is the image of the

open subgroup H1 × {0} of H1 ⊕ Γ2 under the onto, hence open, continuous group
morphism taking the quotient by the discrete subgroup {(−sH1

(γ), γ) | γ ∈ Γ1}. We
conclude by observing that the formula defining Θ gives θ(H1) = Θ([H1, 0]Γ1

), and
so θ(H1) is open in H2, and that the image under θ of any open subset U of H1 is
equal to the image under Θ of the open subset [U, 0]Γ1

of H1 ⊕Γ1
Γ2 and so is open

in H2. �
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