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Abstract. Let f be an equivariant homotopy equivalence f of connected
closed manifolds with smooth semifree actions of a finite group G, and as-
sume also that f is isovariant. The main result states that f is a homotopy
equivalence in the category of isovariant mappings if the manifolds satisfy a
Codimension ≥ 3 Gap Hypothesis; this is done by showing directly that f
satisfies the criteria in the Isovariant Whitehead Theorem of G. Dula and the
author. Examples are given to show the need for the hypotheses in the main
result.

If G is a topological group, then there are two standard notions of morphisms for
topological spaces with continuous actions of G. A continuous mapping f : X → Y
of such objects is said to be equivariant if f(g · x) = g · f(x) for all (g, x) ∈ G×X,
and it is said to be isovariant if one has the identity Gx = Gf(x) for isotropy
subgroups (compare [2], p. 35, and [13], p. 6). For many purposes equivariant
mappings provide an effective framework for studying group actions, but for various
classification questions the stronger concept of isovariance is useful and sometimes
indispensable (compare [13], [5], [16], [4], [19], [1], or [15]).

In algebraic and geometric topology, it is important to have relatively weak crite-
ria for recognizing when a mapping of topological spaces is a homotopy equivalence,
and fundamental results of J. H. C. Whitehead show that, for a large class of well-
behaved spaces, a continuous mapping of arcwise connected spaces is a homotopy
equivalence if and only if it induces isomorphisms of homotopy groups (see [20] or
nearly any other standard reference for homotopy theory), and if the spaces are sim-
ply connected one can weaken the hypothesis further, replacing homotopy groups
by homology groups. Similar results hold for equivariant homotopy equivalences of
well-behaved spaces with well-behaved group actions (for example, see [10] or [12]),
and in certain special cases one also has a version of the Whitehead Theorem in
the category whose morphisms are isovariant mappings (see [8], pp. 34–37). The
purpose of this paper is to give a weaker criterion for recognizing isovariant homo-
topy equivalences when the spaces in question are compact, connected, unbounded
manifolds with smooth semifree actions of finite groups; recall that a compact Lie
group action is said to be semifree if the only isotropy subgroups are the trivial
subgroup and G itself. In order to state the main result we need the following
hypothesis on the dimension of the fixed point set.
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Codimension ≥ 3 Gap Hypothesis (Specialized to semifree actions). If C is a
component of the fixed point set MG, then dim(C) ≤ dimM − 3.

Clearly one has an analogous hypothesis where 3 is replaced by some fixed pos-
itive integer k; in particular, the case k = 2 arises repeatedly in the subject.

Theorem 1. Let n be a positive integer, and let f : M → N be an equivariant
homotopy equivalence of connected, compact, unbounded (= closed), and oriented
smooth n-dimensional G-manifolds such that G acts semifreely, the Codimension ≥
3 Gap Hypothesis is satisfied, and f is isovariant. Then f is a homotopy equivalence
in the category of isovariant mappings.

Notational convention. If a mapping is a homotopy equivalence in the category of
isovariant mappings, we shall often say that it is an isovariant homotopy equiva-
lence (which is stronger than saying that the mapping is an equivariant homotopy
equivalence which happens to be isovariant).

The proof of the the main result relies on some basic properties of smooth man-
ifolds, including Poincaré-Lefschetz Duality and standard implications of the Codi-
mension ≥ 3 Gap Hypothesis for the fundamental group of the complement of the
fixed point set. The following examples show that the conclusion of the main result
fails if the hypotheses in the latter are not satisfied.

Example 2. The conclusions fail if the spaces in question are not manifolds but
can be made into simplicial complexes with simplicial actions of a finite group.

Let k ≥ 2 be an integer, let n ≥ 2, and consider the linear action of Zk on C2n

by scalar multiplication. This action maps the unit disk D2n to itself, and one
can triangulate the latter to make the action simplicial (the orbit space of the unit
sphere is a smooth manifold, so we can construct the triangulation of D2n from a
smooth triangulation of S2n−1/G). Let Y = D2n ∨ D2n where the two subspaces
are joined at the origin (hence Y can be triangulated so that the associated group
action is simplicial), and let f : D2n → Y be inclusion into either the first or second
disk. Then both D2n and Y are equivariantly contractible, so f is automatically an
equivariant homotopy equivalence, and f is isovariant because it is 1–1. However,
f is not an isovariant homotopy equivalence. This follows because an isovariant
homotopy equivalence induces a homotopy equivalence on the complements of the
fixed point sets, and these complements are homotopically inequivalent for D2n and
Y because the complement for the first space is connected but the complement for
the second has two connected components.

Example 3. The conclusions fail if the spaces in question are noncompact mani-
folds.

Let k ≥ 2 be an integer, let G = Zk, and let M = Rp ⊕ Cq, where p ≥ 0, q ≥ 2
and the action of G is trivial on the real coordinates and scalar multiplication on
the complex coordinates. Consider the mapping f : M → M defined by

f(t1, · · · , tp; z1, · · · , zq) =
(
t1, · · · , tp; z

k+1
1 , · · · , zk+1

q

)
.

Once again, this mapping is an equivariant homotopy equivalence because M is
equivariantly contractible, and one can check directly that it is also isovariant.
However, f is not an isovariant homotopy equivalence; if it were, then f would
induce a homotopy equivalence on M − MG, which is homotopy equivalent to
S2q−1. Since one can use the construction to check that the degree of the induced
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mapping S2q−1 � M − MG → M − MG � S2q−1 is equal to (k + 1)q, it is clear
that f does not induce a homotopy equivalence on M −MG, and therefore f is not
an isovariant homotopy equivalence.

Further remarks about the preceding example. One can check directly that the map-
ping f is proper, but it is not a homotopy equivalence in the category of proper
mappings; this follows because the induced map of one point compactifications
f• : Sp+2q → Sp+2q has degree (k + 1)q. It is natural to ask if one has the fol-
lowing analog of main result for proper mappings: Suppose that f : M → N is
a homotopy equivalence in the category of proper equivariant mappings, where M
and N are noncompact, connected, unbounded semifree smooth G-manifolds (where
G is finite). If f is isovariant and the manifolds satisfy the Codimension ≥ 3
Gap Hypothesis, is f a homotopy equivalence in the category of proper isovariant
mappings?

At least some of the methods in this paper should extend to the setting of the
question, so there is some reason to expect the answer might be positive.

Example 4. The conclusion of the main result does not necessarily hold for actions
on G-manifolds which satisfy a Codimension 2 Gap Hypothesis.

For each n ≥ 4 consider the infinite family of smooth Zm-actions on Sn with
knotted (n − 2)-spheres as fixed point sets in [17]. Let V be the tangent space
at a fixed point with the associated linear Zm-action. By Alexander Duality the
complement of the fixed point set has the homology groups of S1, and one can use
the methods of Section 2 in [14] to construct a degree 1 isovariant map from one
of these actions to the linear sphere S(V ⊕ R) such that the map of fixed point
sets is a homeomorphism. This map is an equivariant homotopy equivalence, but it
cannot be an isovariant homotopy equivalence because the complement of the fixed
point set in the linear action is homotopy equivalent to S1 but the complements of
the fixed point sets in the exotic actions are not (specifically, by Section II of [17]
the Alexander polynomials of the examples are nontrivial).

Generalizations to nonsemifree actions. As in [8], two reasons for restricting
attention to semifree actions are (i) if G = Zp where p is prime, then every action
of G is semifree, (ii) in this case it is fairly simple to reconstruct the group action
from the submanifolds of points with a common orbit type. One can combine the
methods of this paper and the inductive arguments as in [8] to prove an extension
of the main theorem to group actions with treelike isotropy structure in the sense of
[8] (see pp. 21–22 and 29–31). This class includes all actions of cyclic groups whose
orders are a power of a prime. It seems likely that one can extend the approach of
[8] to even more general actions by a more detailed analysis of the stratification data
associated to a smooth group action (the approach in [7] seems particularly well-
suited for this purpose), and if this is worked out, an extension of the main result
to such group actions should follow fairly directly using the approach developed
here. Even more generally, one can ask if similar results hold for continuous group
actions with well-behaved homotopy stratifications as in [19].

Degree one maps of disk bundles. One fundamentally important step in the
proof of the main result is the following observation.
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Proposition 5. Let M and N be closed connected smooth n-manifolds, let f :
M → N be a homotopy equivalence, let k ≥ 3 be an integer, and let αM and
αN be vector bundles over M and N whose first Stiefel-Whitney classes satisfy
f∗(w1(αN )) = w1(αM ). Suppose further that we have a map of the associated disk
and sphere bundles

F : (D(αM ), S(αM )) −→ (D(αN ), S(αN)) ,

covering f (for each x ∈ M , the map F sends the fiber over x to the fiber over
f(x)). If F has degree ± 1, then the map of boundaries ∂F : S(αM ) → S(αN ) is a
fiber homotopy equivalence.

Proof. For the sake of clarity, we shall first consider the case where all the manifolds
and vector bundles are orientable, and then we shall describe the modifications
needed to treat the general case.

Let p0 ∈ M , and let q0 = f(p0). Since F is fiber preserving, it maps the
(disk, sphere) fiber pair in (D(αM ), S(αM )) over p0 to the corresponding fiber pair
in (D(αN ), S(αN )) over q0. The map of fiber pairs corresponds to a self-map of
(Dk, Sk−1); let d be its degree. Next, let UM ∈ Hk (D(αM ), S(αM );Z) ∼= Z and
UN ∈ Hk (D(αN ), S(αN);Z) ∼= Z denote the Thom classes for orientations of αM

and αN respectively. Since these classes restrict to generators in the fiber pair
cohomology Hk(Dk, Sk−1;Z) ∼= Z and are the unique classes with this property up
to sign, it follows that F ∗(UN ) = ± d · UM . Let ΩM and ΩN denote generating
cohomology classes in Hn(M ;Z) ∼= Hn(D(αM );Z) and Hn(N ;Z) ∼= Hn(D(αN );Z)
respectively. Since f is a homotopy equivalence we also have f∗(ΩN ) = ±ΩN (but
note that the sign need not be the same as in the preceding sentence!). The cup
products UM ·ΩM and UN ·ΩN generate the groups Hn+k(D(αM ), S(αM );Z) ∼= Z

and Hn+k(D(αM ), S(αM );Z) ∼= Z respectively, and therefore in cohomology we
have

F ∗(Un · ΩN ) = F ∗(UN ) · F ∗(ΩN ) = ± d · UM · ΩM ,

where d is given as above and the sign is again left undetermined. On the other
hand, we also know that the degree of f is ± 1, and this means that d must be
equal to ± 1. Since the induced map of boundaries ∂F is fiber preserving, it follows
that ∂F maps the fiber over p0 to the fiber over q0 by a homotopy equivalence,
and therefore by a topological Five Lemma for fibrations (cf. the proposition at
the bottom of p. 80 in [9]), it follows that ∂F maps S(αM ) to S(αN ) by a fiber
homotopy equivalence. This completes the proof when everything is orientable.

In the general case, we must work with cohomology groups with twisted coef-
ficients instead of the ordinary cohomology groups H∗(· · · ;Z); more precisely, we
need to use local coefficients Zt for suitable choices of twisting homomorphisms

t : π1(M) ∼= π1(N) −→ Z2
∼= {± 1} ∼= Aut(Z) .

More precisely, we need to consider the twisting homomorphism u given by the
first Stiefel-Whitney classes of M and N (which correspond under the isomorphism
π1(M) ∼= π1(N) induced by the homotopy equivalence f) and the twisting homo-
morphism v given by the first Stiefel-Whitney classes of αM and αN (which also
correspond by the hypotheses). It follows that the product homomorphism u · v
determines the first Stiefel-Whitney classes of D(αM ) and D(αN ).
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We shall now use the setting for Thom isomorphisms with twisted coefficients
in Subsection IV.7.9 of [3] (see pp. 253–254 in particular). Specifically, we use
this and the preceding paragraph to modify the argument in the orientable case as
follows: If X = M or N , then the Thom class generates Hk(D(αX), S(αX);Zv) ∼=
Z, the top dimensional cohomology class generates Hn(X;Zu) ∼= Z, and it fol-
lows that their product UX · ΩX generates the top dimensional cohomology group
Hn+k(D(αX), S(αX);Zu·v) ∼= Z. Since F and f define isomorphisms of fundamen-
tal groups which preserve u and v, it follows as before that F ∗(UN ) = ± dUM

where d is the degree of the induced map on the fibers, and in this case the degree
± 1 hypothesis implies that F maps Hn+k(D(αN ), S(αN );Zu·v) isomorphically to
Hn+k(D(αN ), S(αN );Zu·v). As in the argument for the orientable case, this implies
that d = ± 1 and F maps S(αM ) to S(αN ) by a fiber homotopy equivalence. �

Some notational conventions. We shall use the following in the proof of the
main result:

Let P be a closed smooth G-manifold, where G is a finite group. By local
linearity of the action we know that the fixed point set PG is a union of connected
smooth submanifolds; denote these connected components by Pα. Suppose now
that M and N are smooth semifree G-manifolds and f : M → N is an equivariant
homotopy equivalence. Then the associated map fG of fixed point sets defines a
1− 1 correspondence between the components of MG and NG, and if Nα denotes
a component, we set Mα equal to f−1[Nα]∩MG, and take fα to be the continuous
map from Mα to Nα determined by f .

Proof of the main theorem. As in the preceding paragraph, denote the components
ofMG and NG by Mα and Nα respectively. Let Eα(M) and Eα(N) denote pairwise
disjoint invariant closed tubular neighborhoods Mα and Nα, and set EM and EN

equal to the unions of these closed tubular neighborhoods. Next, let Sα(M) =
∂Eα(M) and Sα(N) = ∂Eα(N) be the boundaries of the respective components,
let SM and SN be the unions, and finally let CM and CN be the closures of the
complements of EM and EN respectively. By construction SM and SN define G-
invariant splittings of M = EM ∪ CM and N = EN ∪ CN respectively.

We claim that the pairs (M,CM ) and (N,CN ) are 2-connected. This follows
because (1) CM and CN are deformation retracts of M − MG and N − NG re-
spectively, (2) the pairs (M,M −MG) and (N,N −NG) are 2-connected because
dimM − dimMG = dimN − dimNG ≥ 3.

Let M ′ and N ′ denote the universal coverings of M and N respectively, and let
f ′ : M ′ → N ′ be a lifting of the equivariant homotopy equivalence f . Furthermore,
let E′

M , C ′
M , and S′

M be the inverse images of EM , CM , and SM with respect to
the universal covering map M ′ → M , and define E′

N , C ′
N , and S′

N in terms of the
submanifolds EN , CN , and SN and the universal covering map N ′ → N . Finally,
let Λ denote the group ring Z[π1(M)] ∼= Z[π1(N)].

By Proposition 3.6 on p. 22 of [8], the isovariant map f is isovariantly homotopic
to a map of triads

(M ;EM , CM ) → (N ;EN , CN ),

and therefore the induced map f ′ of universal coverings also splits into a map of
triads

(M ′;E′
M , C ′

M ) −→ (N ′;E′
N , C ′

N ) .
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Since the homotopy equivalence f has degree ±1, the discussion of degree 1 maps
in Chapter 2 of [18] applies, and accordingly the homology mappings

Hj(E
′
M ; Λ) −→ Hj(E

′
N ; Λ),

Hj(S
′
M ; Λ) −→ Hj(S

′
N ; Λ),

Hj(C
′
M ; Λ) −→ Hj(C

′
N ; Λ)

are split surjections. Let Kj(E
′
M ), Kj(S

′
M ), and Kj(C

′
M ) denote their respective

kernels. Since f is a homotopy equivalence, we can use the reasoning at the top of
p. 93 in [6] to conclude that

Kj(S
′
M ) ∼= Kj(E

′
M ) ⊕ Kj(C

′
M ) .

By construction we know that the map of pairs (EM , SM ) → (EN , SN ) splits into
maps of connected components hα : (Eα(M), Sα(M)) → (Eα(N), Sα(N)), and
since f is an equivariant homotopy equivalence, it follows that the underlying maps
of spaces h′

α : Eα(M) → Eα(N) are homotopy equivalences.
We now claim that the induced mappings ∂hα : Sα(M) → Sα(N) are also

homotopy equivalences. As noted in [8] (see lines −11 to −8 on p. 31), the map
hα is equivariantly homotopic, as a map of pairs, to a map of pairs Φα which
preserves fiber pairs (this is called normally straightened in [8]). We claim that
the condition on Stiefel-Whitney classes in Proposition 5 is satisfied. Since fα is
a homotopy equivalence, we know that the induced map f∗

α on H1(· · · ;Z2) sends
the first Stiefel-Whitney class aα(N) ∈ H1(Nα;Z2) to the first Stiefel-Whitney
class aα(M) ∈ H1(Nα;Z2). Furthermore, since f is a homotopy equivalence which
maps Eα(M) to Eα(N), it follows that the analogous cohomology map (h′

α)
∗ sends

the first Stiefel-Whitney class b′α(N) ∈ H1(Eα(N);Z2) to the first Stiefel-Whitney
class b′α(M) ∈ H1(Eα(M);Z2). Let bα(N) ∈ H1(Nα;Z2) and bα(M) ∈ H1(Mα;Z2)
correspond to b′α(N) and b′α(M) under the homotopy equivalences Eα(M) � Mα

and Eα(N) � Nα given by vector bundle projections. If ξα and ωα are the vector
bundles whose total spaces are Eα(M) and Eα(N) respectively, then their first
Stiefel-Whitney classes are given by aα(M)+ bα(M) and aα(N)+ bα(N). We have
shown that the induced cohomology map f∗

α sends aα(N) to aα(M) and bα(N) to
bα(M), and therefore it follows that this cohomology map sends w1(ωα) to w1(ξα).

The preceding discussion implies that Φα satisfies the conditions in Proposition
5, and therefore the latter implies that the induced map of boundaries ∂Φα is a
fiber homotopy equivalence. Since ∂Φα is homotopic to ∂hα, it follows that the
latter is also a homotopy equivalence. This in turn implies that the kernel groups
Kj(Sα(M)′) vanish for all j, and therefore the direct sum decomposition of the
preceding paragraph implies that Kj(C

′
M ) = 0 for all j.

Finally, by Corollary 4.12 on p. 37 of [8] we have reduced the proof of the main
result to showing that the induced map CM → CN is a homotopy equivalence.
At the beginning of the proof we noted that the pairs (M,CM ) and (N,CN ) are
2-connected, and since M and N are connected, the same is true for CM and CN .
The next step is to verify that the map CM → CN induces an isomorphism of
fundamental groups. To see this, consider the following commutative diagram:

π1(CM ) −−−−→ π1(CN )
⏐
⏐�

⏐
⏐�

π1(M) −−−−→ π1(N)
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The vertical morphisms are bijective by the 2-connectivity condition, and the bot-
tom morphism is bijective since M → N is a homotopy equivalence, so the top
diagram must also be an isomorphism by a diagram chase. These isomorphisms of
fundamental groups imply that C ′

M and C ′
N are the universal covering spaces of

CM and CN respectively, so that the map C ′
M → C ′

N is a lifting of CM → CN to
universal coverings. By the the final sentence in the preceding paragraph we know
that the map C ′

M → C ′
N induces isomorphisms in homology, and therefore it follows

that CM → CN is a homotopy equivalence, which is what we needed to show in
order to complete the proof that f is a homotopy equivalence in the category of
isovariant mappings. �
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