Robust transitivity for endomorphisms admitting critical points
HTML articles powered by AMS MathViewer
- by J. Iglesias, C. Lizana and A. Portela
- Proc. Amer. Math. Soc. 144 (2016), 1235-1250
- DOI: https://doi.org/10.1090/proc/12799
- Published electronically: October 14, 2015
- PDF | Request permission
Abstract:
We address the problem of giving necessary and sufficient conditions in order to have robustly transitive endomorphisms admitting persistent critical sets. We exhibit different types of open examples of robustly transitive maps in any isotopic class of endomorphisms acting on the two dimensional torus admitting persistent critical points. We also provide some necessary conditions for robust transitivity in this setting.References
- Pierre Berger and Alvaro Rovella, On the inverse limit stability of endomorphisms, Ann. Inst. H. Poincaré C Anal. Non Linéaire 30 (2013), no. 3, 463–475. MR 3061432, DOI 10.1016/j.anihpc.2012.10.001
- C. Bonatti, L. J. Díaz, and E. R. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math. (2) 158 (2003), no. 2, 355–418 (English, with English and French summaries). MR 2018925, DOI 10.4007/annals.2003.158.355
- Baolin He and Shaobo Gan, Robustly non-hyperbolic transitive endomorphisms on $\Bbb {T}^2$, Proc. Amer. Math. Soc. 141 (2013), no. 7, 2453–2465. MR 3043026, DOI 10.1090/S0002-9939-2013-11527-3
- Cristina Lizana and Enrique Pujals, Robust transitivity for endomorphisms, Ergodic Theory Dynam. Systems 33 (2013), no. 4, 1082–1114. MR 3082540, DOI 10.1017/S0143385712000247
- Cristina Lizana, Vilton Pinheiro, and Paulo Varandas, Contribution to the ergodic theory of robustly transitive maps, Discrete Contin. Dyn. Syst. 35 (2015), no. 1, 353–365. MR 3286962, DOI 10.3934/dcds.2015.35.353
- Ricardo Mañé, Contributions to the stability conjecture, Topology 17 (1978), no. 4, 383–396. MR 516217, DOI 10.1016/0040-9383(78)90005-8
- Ricardo Mañé, An ergodic closing lemma, Ann. of Math. (2) 116 (1982), no. 3, 503–540. MR 678479, DOI 10.2307/2007021
- M. Shub, Topologically transitive diffeomorphisms on $\mathbb {T}^{4}$, Lect. Notes on Math., 206 (1971), 39.
- Hassler Whitney, On singularities of mappings of euclidean spaces. I. Mappings of the plane into the plane, Ann. of Math. (2) 62 (1955), 374–410. MR 73980, DOI 10.2307/1970070
Bibliographic Information
- J. Iglesias
- Affiliation: Facultad de Ingenieria, IMERL, Universidad de La República, Julio Herrera y Reissig 565, C.P. 11300, Montevideo, Uruguay
- Email: jorgei@fing.edu.uy
- C. Lizana
- Affiliation: Departamento de Matemáticas, Facultad de Ciencias, Universidad de los Andes, La Hechicera-Mérida 5101, Venezuela
- MR Author ID: 846407
- Email: clizana@ula.ve
- A. Portela
- Affiliation: Facultad de Ingenieria, IMERL, Universidad de La República, Julio Herrera y Reissig 565, C.P. 11300.,Montevideo, Uruguay
- Email: aldo@fing.edu.uy
- Received by editor(s): August 5, 2014
- Received by editor(s) in revised form: March 17, 2015
- Published electronically: October 14, 2015
- Communicated by: Yingfei Yi
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 1235-1250
- MSC (2010): Primary 37D20, 37D30, 08A35, 35B38
- DOI: https://doi.org/10.1090/proc/12799
- MathSciNet review: 3447675