Double centraliser property and morphism categories
HTML articles powered by AMS MathViewer
- by Nan Gao and Steffen Koenig
- Proc. Amer. Math. Soc. 144 (2016), 971-981
- DOI: https://doi.org/10.1090/proc/12807
- Published electronically: September 1, 2015
- PDF | Request permission
Abstract:
Given a ring $A$ and an idempotent $e \in A$, double centraliser property on the bimodule $eA$ is characterised in terms of equivalences of additive categories, which are related to morphism categories. The results and methods then are applied to gendo-Gorenstein algebras.References
- Maurice Auslander, Representation theory of Artin algebras. I, II, Comm. Algebra 1 (1974), 177–268; ibid. 1 (1974), 269–310. MR 349747, DOI 10.1080/00927877408548230
- Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1995. MR 1314422, DOI 10.1017/CBO9780511623608
- Apostolos Beligiannis, On algebras of finite Cohen-Macaulay type, Adv. Math. 226 (2011), no. 2, 1973–2019. MR 2737805, DOI 10.1016/j.aim.2010.09.006
- Ragnar-Olaf Buchweitz, Morita contexts, idempotents, and Hochschild cohomology—with applications to invariant rings, Commutative algebra (Grenoble/Lyon, 2001) Contemp. Math., vol. 331, Amer. Math. Soc., Providence, RI, 2003, pp. 25–53. MR 2011764, DOI 10.1090/conm/331/05901
- Edgar E. Enochs and Overtoun M. G. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics, vol. 30, Walter de Gruyter & Co., Berlin, 2000. MR 1753146, DOI 10.1515/9783110803662
- Ming Fang and Steffen Koenig, Endomorphism algebras of generators over symmetric algebras, J. Algebra 332 (2011), 428–433. MR 2774695, DOI 10.1016/j.jalgebra.2011.02.031
- M. Fang and S. Koenig, Gendo-symmetric algebras, canonical comultiplication, Hochschild cocomplex and dominant dimension. To appear in Trans. AMS.
- Nan Gao and Steffen Koenig, Grade, dominant dimension and Gorenstein algebras, J. Algebra 427 (2015), 118–141. MR 3312298, DOI 10.1016/j.jalgebra.2014.11.028
- James A. Green, Polynomial representations of $\textrm {GL}_{n}$, Lecture Notes in Mathematics, vol. 830, Springer-Verlag, Berlin-New York, 1980. MR 606556, DOI 10.1007/BFb0092296
- Osamu Iyama, Auslander correspondence, Adv. Math. 210 (2007), no. 1, 51–82. MR 2298820, DOI 10.1016/j.aim.2006.06.003
- Yasuo Iwanaga, On rings with finite self-injective dimension, Comm. Algebra 7 (1979), no. 4, 393–414. MR 522552, DOI 10.1080/00927877908822356
- Otto Kerner and Kunio Yamagata, Morita algebras, J. Algebra 382 (2013), 185–202. MR 3034479, DOI 10.1016/j.jalgebra.2013.02.013
- Kiiti Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6 (1958), 83–142. MR 96700
- Wolfgang Soergel, Kategorie $\scr O$, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), no. 2, 421–445 (German, with English summary). MR 1029692, DOI 10.1090/S0894-0347-1990-1029692-5
Bibliographic Information
- Nan Gao
- Affiliation: Department of Mathematics, Shanghai University, Shanghai, People’s Republic of China 200444
- MR Author ID: 833788
- Email: nangao@shu.edu.cn
- Steffen Koenig
- Affiliation: Institut für Algebra und Zahlentheorie, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- MR Author ID: 263193
- Email: skoenig@mathematik.uni-stuttgart.de
- Received by editor(s): October 2, 2014
- Received by editor(s) in revised form: March 7, 2015
- Published electronically: September 1, 2015
- Additional Notes: The first author was supported by the National Natural Science Foundation of China (Grant No. 11101259).
- Communicated by: Pham Huu Tiep
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 971-981
- MSC (2010): Primary 16E65, 18E05
- DOI: https://doi.org/10.1090/proc/12807
- MathSciNet review: 3447651