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OPERATOR LIPSCHITZ ESTIMATES

IN THE UNITARY SETTING

P. J. AYRE, M. G. COWLING, AND F. A. SUKOCHEV

(Communicated by Marius Junge)

Abstract. We develop a Lipschitz estimate for unitary operators. More
specifically, we show that for each p ∈ (1,∞) there exists a constant dp such
that ‖f(U)− f(V )‖p ≤ dp ‖U − V ‖p for all Lipschitz functions f : T → C and

unitary operators U and V .

1. Preliminaries

We consider a problem in perturbation theory arising from a 1964 conjecture of
M. G. Krein [1]. Although the conjecture did not hold [2], an entire class of new
problems was brought to light. In fact, it was only recently that D. Potapov and
F. Sukochev found a solution in the self-adjoint setting, as follows (notation will be
explained below).

Theorem 1 (Potapov–Sukochev [3, Theorem 1]). For each p ∈ (1,∞), there is a
constant cp such that

(1) ‖f(A)− f(B)‖p ≤ cp ‖f‖Lip ‖A−B‖p
for all Lipschitz functions f : R → C and all self-adjoint operators A and B.

The intention of this paper is to translate the result above from the self-adjoint
to the unitary setting. We now state our main result.

Theorem 2. For each p ∈ (1,∞), there is a constant dp such that

(2) ‖f(U)− f(V )‖p ≤ dp ‖f‖Lip ‖U − V ‖p
for all Lipschitz functions f : T → C and all unitary operators U and V . Further,
dp ≤ 32(cp + 9).

Our method is straightforward and improves the constant dp significantly over
the existing estimates [4, Corollary 6.1].

We now explain the notation. Recall that a function f : R → C is said to be
Lipschitz continuous if there is a constant C such that

|f(x)− f(y)| ≤ C |x− y| ∀x, y ∈ R;

it is well known that this is equivalent to the (distributional) derivative f ′ being in
L∞(R) and ‖f ′‖∞ ≤ C. The Lipschitz “norm” ‖f‖Lip of f is the smallest possible
value of C in either of these inequalities. Evidently the Lipschitz “norm” of a
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constant function is 0; however, we may add a constant to the function f in the
theorems above without changing either side of (1) or (2).

Throughout, we deal with a fixed Hilbert space H and linear operators thereon.
For p ∈ [1,∞), the Schatten p-norm of the operator T on H is given by

‖T‖p =
(∑
n∈N

sn(T )
p
)1/p

,

where the numbers sn(T ) are the eigenvalues of (T ∗T )1/2.
Of course, we also deal with functions f : T → C, where T denotes the unit circle

in the complex plane. For such a function f , we write fr for the corresponding 2π-
periodic function on R, namely,

fr(θ) = f(exp(iθ)) ∀θ ∈ R,

and we define ‖f‖Lip to be ‖fr‖Lip.
By Fourier analysis, we may write any (sufficiently smooth) function f : T → C

in the form

f(z) =
∑
n∈Z

f̂(n) zn ∀z ∈ T,

where

f̂(n) =
1

2π

∫ π

−π

f(e−iθ) e−inθ dθ.

We write exp(i[a, b]) for the arc {eiθ : a ≤ θ ≤ b}.

2. Proof of the main result

We begin with a simpler version of the result.

Lemma 3. Suppose that f : T → C is such that
∑

n∈Z

∣∣∣nf̂(n)∣∣∣ < ∞. Then

‖f(U)− f(V )‖q ≤
∑
n∈Z

∣∣∣nf̂(n)∣∣∣ ‖U − V ‖q

for all unitary operators U and V and all q ∈ [1,∞].

Proof. Clearly, if n > 0, then Un − V n =
∑n−1

k=0 U
k(U − V )V n−1−k, and so

‖Un − V n‖q ≤
n−1∑
k=0

∥∥Uk
∥∥ ‖U − V ‖q

∥∥V n−1−k
∥∥ = n ‖U − V ‖q ;

the case where n < 0 is similar, whence

‖f(U)− f(V )‖q ≤
∑
n∈Z

∣∣∣f̂(n)∣∣∣ ‖Un − V n‖q ≤
∑
n∈Z

∣∣∣nf̂(n)∣∣∣ ‖U − V ‖q ,

as required. �

Lemma 4. Suppose that f : T → C is a Lipschitz function and that

f(z) =
∑
n∈Z

f̂(n) zn ∀z ∈ T,

where f̂(0) = 0. Then ‖f‖∞ ≤ 2 ‖f‖Lip.
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Proof. Clearly,

f ′(z) =
∑

n∈Z\{0}
nf̂(n) zn ∀z ∈ T,

and so

‖f‖∞ ≤
∑

n∈Z\{0}

∣∣∣f̂(n)∣∣∣

≤
( ∑

n∈Z\{0}

1

n2

)1/2( ∑
n∈Z\{0}

∣∣∣nf̂(n)∣∣∣2
)1/2

≤ 2 ‖f ′‖2 ,
as claimed. �

Proof of Theorem 2. First, we use a partition of unity argument to reduce to the
case where supp(f) ⊆ exp(i[π6 ,

5π
6 ]), at the cost of increasing the constant dp by the

factor 16.
We take the function φ : T → [0, 1] such that φr is linear on both [π6 ,

π
3 ] and

[ 2π3 , 5π6 ], and

φ(eiθ) =

{
1 if θ ∈ [π3 ,

2π
3 ],

0 if θ ∈ [ 5π6 , 13π
6 ];

then ‖φ′‖∞ = 6/π and φ1 + φ2 + φ3 + φ4 = 1, where φk(e
iθ) = φ(ikeiθ) for all

θ ∈ R. Without loss of generality, we suppose that f has mean 0, and so Lemma 4
implies that

‖fφk‖Lip ≤ ‖f ′φk‖∞ + ‖f(φk)
′‖∞ ≤ 4 ‖f‖Lip .

Since f = fφ1 + fφ2 + fφ3 + fφ4, it suffices to show Theorem 2 for each fφk. By
a simple argument using rotations, it suffices to treat the case where k = 0.

Suppose that supp(f) ⊆ exp(i[π6 ,
5π
6 ]). We define the symmetrized function

f̃ : T → C by

f̃(eiθ) = f(eiθ) + f(e−iθ) ∀θ ∈ R.

The corresponding function f̃r on R is given by f̃r(θ) = fr(θ)+fr(−θ) for all θ ∈ R.

The functions fr(·) and fr(−·) have disjoint supports, so
∥∥f̃∥∥

Lip
= ‖f‖Lip. We now

show that

(3)
∥∥f̃(U)− f̃(V )

∥∥
p
≤ 2 cp ‖f‖Lip ‖U − V ‖p

for all unitary operators U and V . Define g : R → C by

g(λ) =

{
f̃r(cos

−1(λ)) if λ ∈ [−1, 1],

0 otherwise.

If λ ∈ [
√
3
2 , 1], then cos−1(λ) ∈ [0, π6 ], and so g(λ) = 0. Similarly, g(λ) = 0 if

λ ∈ [−1,−
√
3
2 ]. Now g′(λ) = 0 unless λ ∈ [−

√
3
2 ,

√
3
2 ], and for almost all these λ,

|g′(λ)| =
∣∣∣∣f̃ ′

r(cos
−1(λ))

1

(1− λ2)1/2

∣∣∣∣ ≤ 2 ‖f‖Lip ;

that is, ‖g‖Lip ≤ 2 ‖f‖Lip . Further, by definition, for all θ ∈ R,

g( 12 (e
iθ + e−iθ)) = g(cos(θ)) = f̃r(θ) = f̃(eiθ).
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For any unitary operator W , the operator 1
2 (W + W ∗) is self-adjoint, and by the

spectral theorem,

g( 12 (W +W ∗)) = f̃(W ).

Theorem 1 therefore implies that∥∥f̃(U)− f̃(V )
∥∥
p
≤

∥∥g( 12 (U + U∗))− g( 12 (V + V ∗))
∥∥
p

≤ cp ‖g‖Lip
∥∥ 1
2 (U + U∗)− 1

2 (V + V ∗)
∥∥
p

≤ 2 cp
∥∥f̃∥∥

Lip
‖U − V ‖p .

We continue to suppose that supp(f) ⊆ exp(i[π6 ,
5π
6 ]). By Lemma 4, ‖f‖∞ ≤

2 ‖f‖Lip. To conclude, we show that

‖f(U)− f(V )‖p ≤ (2cp + 18) ‖f‖Lip ‖U − V ‖p .

Define the function ψ : T → [0, 1] by requiring that ψr is linear on both [− π
18 ,

π
18 ]

and [ 17π18 , 19π18 ], and

ψ(eiθ) =

{
1 if θ ∈ [ π18 ,

17π
18 ] ,

0 if θ ∈ [ 19π18 , 35π18 ].

Further, let χ : T → R be the step function such that χ(eiθ) = 9 if θ ∈ [−π
9 ,

π
9 ] and

χ(eiθ) = 0 otherwise, and define φ to be the convolution χ ∗ ψ; that is,

φ(eiθ) =
9

2π

∫ π/9

−π/9

ψ(ei(θ−η)) dη ∀θ ∈ R.

We see easily that φ(eiθ) = 1 if θ ∈ [π6 ,
5π
6 ] and φ(eiθ) = 0 if θ ∈ [ 7π6 , 11π

6 ]; further,

φ̂ = ψ̂ χ̂, and a routine computation shows that∑
n∈Z

∣∣∣nφ̂(n)∣∣∣
=

∑
n∈Z\{0}

|n|
∣∣∣∣ 9

nπ
sin

(nπ
9

)∣∣∣∣
∣∣∣∣9e−inπ/2

n2π2

(
cos

(17nπ
18

)
− cos

(19nπ
18

))∣∣∣∣
≤

∑
n∈Z\{0}

162

n2π3
=

54

π
< 18.

Then f = φf̃ . Further, φ(U) is well defined and ‖φ(U)‖∞ = 1 by the spectral
theorem. Thus, by (3) and Lemma 3,

‖f(U)− f(V )‖p =
∥∥φ(U)f̃(U)− φ(V )f̃(V )

∥∥
p

≤
∥∥φ(U)(f̃(U)− f̃(V ))

∥∥
p
+
∥∥(φ(U)− φ(V ))f̃(V )

∥∥
p

≤
∥∥φ∥∥∞ ∥∥f̃(U)− f̃(V )

∥∥
p
+
∥∥φ(U)− φ(V )

∥∥
p

∥∥f̃∥∥∞
≤ 2 cp

∥∥f∥∥
Lip

∥∥U − V
∥∥
p
+ 18

∥∥U − V
∥∥
p

∥∥f∥∥
Lip

,

as desired. This step introduces a factor of 2(cp + 9) into dp. �

Our final remark concerns the dependence of the constant dp on p. It was shown
in [5] that cp = O(p2/(p− 1)). It is clear that the behaviour of the constant dp is
similar.
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