Geometric description of the classification of holomorphic semigroups
HTML articles powered by AMS MathViewer
- by Dimitrios Betsakos
- Proc. Amer. Math. Soc. 144 (2016), 1595-1604
- DOI: https://doi.org/10.1090/proc/12814
- Published electronically: July 8, 2015
- PDF | Request permission
Abstract:
We consider parabolic semigroups $(\phi _t)_{t\geq 0}$ of holomorphic self-maps of the unit disk $\mathbb {D}$ with Denjoy-Wolff point $1$, Koenigs function $h$ and associated planar domain $\Omega$. We give a geometric description of the classification of such semigroups: The semigroup is of positive hyperbolic step if and only if $\Omega$ is contained in a horizontal half-plane. Moreover, a semigroup of positive hyperbolic step has trajectories that converge to $1$ strongly tangentially (namely the semigroup is of finite shift) if and only if $h$ is conformal at $1$.References
- Marco Abate, Iteration theory of holomorphic maps on taut manifolds, Research and Lecture Notes in Mathematics. Complex Analysis and Geometry, Mediterranean Press, Rende, 1989. MR 1098711
- I. N. Baker and Ch. Pommerenke, On the iteration of analytic functions in a halfplane. II, J. London Math. Soc. (2) 20 (1979), no. 2, 255–258. MR 551452, DOI 10.1112/jlms/s2-20.2.255
- D. Betsakos, On the asymptotic behavior of the trajectories of semigroups of holomorphic functions, Preprint 2014. To appear in the J. Geom. Anal.
- Manuel D. Contreras and Santiago Díaz-Madrigal, Analytic flows on the unit disk: angular derivatives and boundary fixed points, Pacific J. Math. 222 (2005), no. 2, 253–286. MR 2225072, DOI 10.2140/pjm.2005.222.253
- Manuel D. Contreras, Santiago Díaz-Madrigal, and Pavel Gumenyuk, Loewner chains in the unit disk, Rev. Mat. Iberoam. 26 (2010), no. 3, 975–1012. MR 2789373, DOI 10.4171/RMI/624
- Manuel D. Contreras, Santiago Díaz-Madrigal, and Pavel Gumenyuk, Slope problem for trajectories of holomorphic semigroups in the unit disk, Comput. Methods Funct. Theory 15 (2015), no. 1, 117–124. MR 3318309, DOI 10.1007/s40315-014-0092-9
- M. D. Contreras, S. Díaz Madrigal, and Ch. Pommerenke, On boundary critical points for semigroups of analytic functions, Math. Scand. 98 (2006), no. 1, 125–142. MR 2221548, DOI 10.7146/math.scand.a-14987
- Manuel D. Contreras, Santiago Díaz-Madrigal, and Christian Pommerenke, Some remarks on the Abel equation in the unit disk, J. Lond. Math. Soc. (2) 75 (2007), no. 3, 623–634. MR 2352725, DOI 10.1112/jlms/jdm013
- Manuel D. Contreras, Santiago Díaz-Madrigal, and Christian Pommerenke, Iteration in the unit disk: the parabolic zoo, Complex and harmonic analysis, DEStech Publ., Inc., Lancaster, PA, 2007, pp. 63–91. MR 2387282
- Manuel D. Contreras, Santiago Díaz-Madrigal, and Christian Pommerenke, Second angular derivatives and parabolic iteration in the unit disk, Trans. Amer. Math. Soc. 362 (2010), no. 1, 357–388. MR 2550155, DOI 10.1090/S0002-9947-09-04873-9
- Carl C. Cowen, Iteration and the solution of functional equations for functions analytic in the unit disk, Trans. Amer. Math. Soc. 265 (1981), no. 1, 69–95. MR 607108, DOI 10.1090/S0002-9947-1981-0607108-9
- Mark Elin, Fiana Jacobzon, Marina Levenshtein, and David Shoikhet, The Schwarz lemma: rigidity and dynamics, Harmonic and complex analysis and its applications, Trends Math., Birkhäuser/Springer, Cham, 2014, pp. 135–230. MR 3203101, DOI 10.1007/978-3-319-01806-5_{3}
- Mark Elin and David Shoikhet, Linearization models for complex dynamical systems, Operator Theory: Advances and Applications, vol. 208, Birkhäuser Verlag, Basel, 2010. Topics in univalent functions, functional equations and semigroup theory; Linear Operators and Linear Systems. MR 2683159, DOI 10.1007/978-3-0346-0509-0
- John B. Garnett and Donald E. Marshall, Harmonic measure, New Mathematical Monographs, vol. 2, Cambridge University Press, Cambridge, 2005. MR 2150803, DOI 10.1017/CBO9780511546617
- V. V. Goryaĭnov, Semigroups of analytic functions in analysis and applications, Uspekhi Mat. Nauk 67 (2012), no. 6(408), 5–52 (Russian, with Russian summary); English transl., Russian Math. Surveys 67 (2012), no. 6, 975–1021. MR 3075076, DOI 10.1070/RM2012v067n06ABEH004816
- Fiana Jacobzon, Marina Levenshtein, and Simeon Reich, Convergence characteristics of one-parameter continuous semigroups, Anal. Math. Phys. 1 (2011), no. 4, 311–335. MR 2887103, DOI 10.1007/s13324-011-0021-2
- Pietro Poggi-Corradini, Backward-iteration sequences with bounded hyperbolic steps for analytic self-maps of the disk, Rev. Mat. Iberoamericana 19 (2003), no. 3, 943–970. MR 2053569, DOI 10.4171/RMI/375
- Pietro Poggi-Corradini, On the uniqueness of classical semiconjugations for self-maps of the disk, Comput. Methods Funct. Theory 6 (2006), no. 2, 403–421. MR 2291141, DOI 10.1007/BF03321619
- Pietro Poggi-Corradini, Pointwise convergence on the boundary in the Denjoy-Wolff theorem, Rocky Mountain J. Math. 40 (2010), no. 4, 1275–1288. MR 2718814, DOI 10.1216/RMJ-2010-40-4-1275
- Ch. Pommerenke, On the iteration of analytic functions in a halfplane, J. London Math. Soc. (2) 19 (1979), no. 3, 439–447. MR 540058, DOI 10.1112/jlms/s2-19.3.439
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406, DOI 10.1007/978-1-4612-0887-7
Bibliographic Information
- Dimitrios Betsakos
- Affiliation: Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- MR Author ID: 618946
- Email: betsakos@math.auth.gr
- Received by editor(s): December 2, 2014
- Received by editor(s) in revised form: April 20, 2015
- Published electronically: July 8, 2015
- Communicated by: Jeremy Tyson
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 1595-1604
- MSC (2010): Primary 30D05, 37L05, 30C45
- DOI: https://doi.org/10.1090/proc/12814
- MathSciNet review: 3451236