Lie-model for Thom spaces of tangent bundles
Authors:
Yves Félix, John Oprea and Daniel Tanré
Journal:
Proc. Amer. Math. Soc. 144 (2016), 1829-1840
MSC (2010):
Primary 55P62; Secondary 55R25
DOI:
https://doi.org/10.1090/proc/12829
Published electronically:
August 12, 2015
MathSciNet review:
3451257
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We describe the rational homotopy type of Thom spaces and use this information to create a Quillen Lie-model in the case of the tangent bundle of a closed, oriented, simply-connected manifold. Examples are given.
- [1] Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, New York, 1997. Corrected third printing of the 1993 original. MR 1700700
- [2] O. Burlet, Rational homotopy of oriented Thom spaces, Proceedings of the Advanced Study Institute on Algebraic Topology (Aarhus Univ., Aarhus, 1970) Mat. Inst., Aarhus Univ., Aarhus, 1970, pp. 20–22. Various Publ. Ser., No. 13. MR 0336743
- [3] Albrecht Dold, Lectures on algebraic topology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1972 edition. MR 1335915
- [4] Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR 1802847
- [5] Yves Félix, John Oprea, and Daniel Tanré, Algebraic models in geometry, Oxford Graduate Texts in Mathematics, vol. 17, Oxford University Press, Oxford, 2008. MR 2403898
- [6] Igor Kříž, On the rational homotopy type of configuration spaces, Ann. of Math. (2) 139 (1994), no. 2, 227–237. MR 1274092, https://doi.org/10.2307/2946581
- [7] Pascal Lambrechts and Don Stanley, The rational homotopy type of configuration spaces of two points, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 4, 1029–1052 (English, with English and French summaries). MR 2111020
- [8] Howard J. Marcum and Duane Randall, The homotopy Thom class of a spherical fibration, Proc. Amer. Math. Soc. 80 (1980), no. 2, 353–358. MR 577773, https://doi.org/10.1090/S0002-9939-1980-0577773-8
- [9] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. MR 0440554
- [10] Ştefan Papadima, The rational homotopy of Thom spaces and the smoothing of homology classes, Comment. Math. Helv. 60 (1985), no. 4, 601–614. MR 826873, https://doi.org/10.1007/BF02567434
- [11] Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, https://doi.org/10.2307/1970725
- [12] Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078
- [13] Daniel Tanré, Homotopie rationnelle: modèles de Chen, Quillen, Sullivan, Lecture Notes in Mathematics, vol. 1025, Springer-Verlag, Berlin, 1983 (French). MR 764769
- [14] René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86 (French). MR 61823, https://doi.org/10.1007/BF02566923
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 55P62, 55R25
Retrieve articles in all journals with MSC (2010): 55P62, 55R25
Additional Information
Yves Félix
Affiliation:
Département de Mathématiques, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgique
Email:
yves.felix@uclouvain.be
John Oprea
Affiliation:
Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115
Email:
j.oprea@csuohio.edu
Daniel Tanré
Affiliation:
Département de Mathématiques, Université de Lille 1, 59655 Villeneuve d’Ascq Cedex, France
Email:
Daniel.Tanre@univ-lille1.fr
DOI:
https://doi.org/10.1090/proc/12829
Received by editor(s):
September 10, 2014
Received by editor(s) in revised form:
May 9, 2015
Published electronically:
August 12, 2015
Additional Notes:
The first author was partially supported by the MICINN grant MTM2010-18089.
The second author was partially supported by a grant from the Simons Foundation (#244393).
The third author was partially supported by the MICINN grant MTM2010-18089, the ANR-11-BS01-002-01 “HOGT" and the ANR-11-LABX-0007-01 “CEMPI”
Communicated by:
Michael A. Mandell
Article copyright:
© Copyright 2015
American Mathematical Society