Quantum dimensions and fusion rules for parafermion vertex operator algebras
HTML articles powered by AMS MathViewer
- by Chongying Dong and Qing Wang
- Proc. Amer. Math. Soc. 144 (2016), 1483-1492
- DOI: https://doi.org/10.1090/proc/12838
- Published electronically: September 9, 2015
- PDF | Request permission
Abstract:
The quantum dimensions and the fusion rules for the parafermion vertex operator algebra associated to the irreducible highest weight module for the affine Kac-Moody algebra $A_1^{(1)}$ of level $k$ are determined.References
- Toshiyuki Abe, Chongying Dong, and Haisheng Li, Fusion rules for the vertex operator algebra $M(1)$ and $V^+_L$, Comm. Math. Phys. 253 (2005), no. 1, 171–219. MR 2105641, DOI 10.1007/s00220-004-1132-5
- C. Ai, C. Dong, X. Jiao and L. Ren, The irreducible modules and fusion rules for the parafermion vertex operator algebras, arXiv:1412.8154.
- Tomoyuki Arakawa, Representation theory of $\scr W$-algebras, Invent. Math. 169 (2007), no. 2, 219–320. MR 2318558, DOI 10.1007/s00222-007-0046-1
- Tomoyuki Arakawa, Ching Hung Lam, and Hiromichi Yamada, Zhu’s algebra, $C_2$-algebra and $C_2$-cofiniteness of parafermion vertex operator algebras, Adv. Math. 264 (2014), 261–295. MR 3250285, DOI 10.1016/j.aim.2014.07.021
- T. Arakawa, C. H. Lam and H. Yamada, A characterazation of parafermion vertex operator algebras, preprint.
- Andrea Cappelli, Lachezar S. Georgiev, and Ivan T. Todorov, Parafermion Hall states from coset projections of abelian conformal theories, Nuclear Phys. B 599 (2001), no. 3, 499–530. MR 1825204, DOI 10.1016/S0550-3213(00)00774-4
- Chongying Dong, Vertex algebras associated with even lattices, J. Algebra 161 (1993), no. 1, 245–265. MR 1245855, DOI 10.1006/jabr.1993.1217
- Chongying Dong, Xiangyu Jiao, and Feng Xu, Quantum dimensions and quantum Galois theory, Trans. Amer. Math. Soc. 365 (2013), no. 12, 6441–6469. MR 3105758, DOI 10.1090/S0002-9947-2013-05863-1
- Chongying Dong and James Lepowsky, Generalized vertex algebras and relative vertex operators, Progress in Mathematics, vol. 112, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1233387, DOI 10.1007/978-1-4612-0353-7
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Simple currents and extensions of vertex operator algebras, Comm. Math. Phys. 180 (1996), no. 3, 671–707. MR 1408523
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Regularity of rational vertex operator algebras, Adv. Math. 132 (1997), no. 1, 148–166. MR 1488241, DOI 10.1006/aima.1997.1681
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Twisted representations of vertex operator algebras, Math. Ann. 310 (1998), no. 3, 571–600. MR 1615132, DOI 10.1007/s002080050161
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), no. 1, 1–56. MR 1794264, DOI 10.1007/s002200000242
- Chongying Dong, Ching Hung Lam, and Hiromichi Yamada, $W$-algebras related to parafermion algebras, J. Algebra 322 (2009), no. 7, 2366–2403. MR 2553685, DOI 10.1016/j.jalgebra.2009.03.034
- Chongying Dong, Ching Hung Lam, Qing Wang, and Hiromichi Yamada, The structure of parafermion vertex operator algebras, J. Algebra 323 (2010), no. 2, 371–381. MR 2564844, DOI 10.1016/j.jalgebra.2009.08.003
- C. Dong and L. Ren, Representations of the parafermion vertex operator algebras, arxiv:1411.6085.
- Chongying Dong and Qing Wang, The structure of parafermion vertex operator algebras: general case, Comm. Math. Phys. 299 (2010), no. 3, 783–792. MR 2718932, DOI 10.1007/s00220-010-1114-8
- Chongying Dong and Qing Wang, On $C_2$-cofiniteness of parafermion vertex operator algebras, J. Algebra 328 (2011), 420–431. MR 2745574, DOI 10.1016/j.jalgebra.2010.10.015
- Edward Frenkel, Victor Kac, and Minoru Wakimoto, Characters and fusion rules for $W$-algebras via quantized Drinfel′d-Sokolov reduction, Comm. Math. Phys. 147 (1992), no. 2, 295–328. MR 1174415
- Igor B. Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64. MR 1142494, DOI 10.1090/memo/0494
- Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026
- Igor B. Frenkel and Yongchang Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), no. 1, 123–168. MR 1159433, DOI 10.1215/S0012-7094-92-06604-X
- P. Goddard, A. Kent, and D. Olive, Unitary representations of the Virasoro and super-Virasoro algebras, Comm. Math. Phys. 103 (1986), no. 1, 105–119. MR 826859
- Doron Gepner and Zongan Qiu, Modular invariant partition functions for parafermionic field theories, Nuclear Phys. B 285 (1987), no. 3, 423–453. MR 897028, DOI 10.1016/0550-3213(87)90348-8
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219, DOI 10.1017/CBO9780511626234
- Hai Sheng Li, Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Algebra 96 (1994), no. 3, 279–297. MR 1303287, DOI 10.1016/0022-4049(94)90104-X
- James Lepowsky and Haisheng Li, Introduction to vertex operator algebras and their representations, Progress in Mathematics, vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2023933, DOI 10.1007/978-0-8176-8186-9
- Akihiro Tsuchiya and Yukihiro Kanie, Vertex operators in conformal field theory on $\textbf {P}^1$ and monodromy representations of braid group, Conformal field theory and solvable lattice models (Kyoto, 1986) Adv. Stud. Pure Math., vol. 16, Academic Press, Boston, MA, 1988, pp. 297–372. MR 972998, DOI 10.2969/aspm/01610297
- Yongchang Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), no. 1, 237–302. MR 1317233, DOI 10.1090/S0894-0347-96-00182-8
Bibliographic Information
- Chongying Dong
- Affiliation: Department of Mathematics, University of California, Santa Cruz, California 95064
- MR Author ID: 316207
- Qing Wang
- Affiliation: School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic of China
- MR Author ID: 820974
- Received by editor(s): November 26, 2014
- Received by editor(s) in revised form: April 25, 2015, and May 8, 2015
- Published electronically: September 9, 2015
- Additional Notes: The first author was supported by NSF grant DMS-1404741, NSA grant H98230-14-1-0118 and China NSF grant 11371261.
The second author was supported by China NSF grant (No. 11371024), Natural Science Foundation of Fujian Province (No. 2013J01018) and Fundamental Research Funds for the Central University (No. 2013121001) - Communicated by: Kailash Misra
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 1483-1492
- MSC (2010): Primary 17B69
- DOI: https://doi.org/10.1090/proc/12838
- MathSciNet review: 3451226