A Lyapunov type inequality for indefinite weights and eigenvalue homogenization
HTML articles powered by AMS MathViewer
- by Julián Fernández Bonder, Juan Pablo Pinasco and Ariel Martin Salort
- Proc. Amer. Math. Soc. 144 (2016), 1669-1680
- DOI: https://doi.org/10.1090/proc/12871
- Published electronically: September 15, 2015
- PDF | Request permission
Abstract:
In this paper we prove a Lyapunov type inequality for quasilinear problems with indefinite weights. We show that the first eigenvalue is bounded below in terms of the integral of the weight, instead of the integral of its positive part. We apply this inequality to some eigenvalue homogenization problems with indefinite weights.References
- Walter Allegretto and Yin Xi Huang, Eigenvalues of the indefinite-weight $p$-Laplacian in weighted spaces, Funkcial. Ekvac. 38 (1995), no. 2, 233–242. MR 1356326
- Göran Borg, On a Liapounoff criterion of stability, Amer. J. Math. 71 (1949), 67–70. MR 28500, DOI 10.2307/2372093
- Thierry Champion and Luigi De Pascale, Asymptotic behaviour of nonlinear eigenvalue problems involving $p$-Laplacian-type operators, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), no. 6, 1179–1195. MR 2376876, DOI 10.1017/S0308210506000667
- Doina Cioranescu and Patrizia Donato, An introduction to homogenization, Oxford Lecture Series in Mathematics and its Applications, vol. 17, The Clarendon Press, Oxford University Press, New York, 1999. MR 1765047
- Mabel Cuesta, Eigenvalue problems for the $p$-Laplacian with indefinite weights, Electron. J. Differential Equations (2001), No. 33, 9. MR 1836801
- K. M. Das and A. S. Vatsala, Green’s function for $n-n$ boundary value problem and an analogue of Hartman’s result, J. Math. Anal. Appl. 51 (1975), no. 3, 670–677. MR 377161, DOI 10.1016/0022-247X(75)90117-1
- L. Euler, Nova methodus innumerabiles aequationes differentiales secundi gradus reducendi ad aequationes differentiales primi gradus, Commentarii academiae scientiarum Petropolitanae 3 (1732), 124-137. English version, translated and annotated by I. Bruce, http: //www.17centurymaths.com/contents/euler/e010tr.pdf.
- Julián Fernández Bonder and Juan Pablo Pinasco, Eigenvalues of the $p$-Laplacian in fractal strings with indefinite weights, J. Math. Anal. Appl. 308 (2005), no. 2, 764–774. MR 2150123, DOI 10.1016/j.jmaa.2004.12.019
- Julián Fernández Bonder, Juan P. Pinasco, and Ariel M. Salort, Convergence rate for some quasilinear eigenvalues homogenization problems, J. Math. Anal. Appl. 423 (2015), no. 2, 1427–1447. MR 3278207, DOI 10.1016/j.jmaa.2014.10.052
- J. Fernández Bonder, J. P. Pinasco, A. M. Salort, Quasilinear eigenvalues, Rev. Matemática de la UMA, 56 (2015), no. 1, 1-25.
- J. Fernández Bonder, J. P. Pinasco, A. M. Salort, Eigenvalue homogenisation problem with indefinite weights. arXiv:1504.03893, to appear in Bulletin of the Australian Mathematical Society.
- Jacqueline Fleckinger and Michel L. Lapidus, Eigenvalues of elliptic boundary value problems with an indefinite weight function, Trans. Amer. Math. Soc. 295 (1986), no. 1, 305–324. MR 831201, DOI 10.1090/S0002-9947-1986-0831201-3
- Jesús García Azorero and Ireneo Peral Alonso, Comportement asymptotique des valeurs propres du $p$-laplacien, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 2, 75–78 (French, with English summary). MR 954263
- B. J. Harris and Q. Kong, On the oscillation of differential equations with an oscillatory coefficient, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1831–1839. MR 1283552, DOI 10.1090/S0002-9947-1995-1283552-4
- Huei-Lin Hong, Wei-Cheng Lian, and Cheh-Chih Yeh, The oscillation of half-linear differential equations with an oscillatory coefficient, Math. Comput. Modelling 24 (1996), no. 7, 77–86. MR 1416945, DOI 10.1016/0895-7177(96)00129-X
- Peter Hess and Tosio Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Partial Differential Equations 5 (1980), no. 10, 999–1030. MR 588690, DOI 10.1080/03605308008820162
- Tero Kilpeläinen, Weighted Sobolev spaces and capacity, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), no. 1, 95–113. MR 1246890
- Sergey A. Nazarov, Iryna L. Pankratova, and Andrey L. Piatnitski, Homogenization of the spectral problem for periodic elliptic operators with sign-changing density function, Arch. Ration. Mech. Anal. 200 (2011), no. 3, 747–788. MR 2796132, DOI 10.1007/s00205-010-0370-2
- B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics Series, vol. 219, Longman Scientific & Technical, Harlow, 1990. MR 1069756
- I. Pankratova and A. Piatnitski, Homogenization of spectral problem for locally periodic elliptic operators with sign-changing density function, J. Differential Equations 250 (2011), no. 7, 3088–3134. MR 2771256, DOI 10.1016/j.jde.2011.01.022
- Juan Pablo Pinasco, Lower bounds for eigenvalues of the one-dimensional $p$-Laplacian, Abstr. Appl. Anal. 2 (2004), 147–153. MR 2058270, DOI 10.1155/S108533750431002X
- Juan Pablo Pinasco, Lyapunov-type inequalities, SpringerBriefs in Mathematics, Springer, New York, 2013. With applications to eigenvalue problems. MR 3100444, DOI 10.1007/978-1-4614-8523-0
- Didier Smets, A concentration-compactness lemma with applications to singular eigenvalue problems, J. Funct. Anal. 167 (1999), no. 2, 463–480. MR 1716204, DOI 10.1006/jfan.1999.3461
- Bengt Ove Turesson, Nonlinear potential theory and weighted Sobolev spaces, Lecture Notes in Mathematics, vol. 1736, Springer-Verlag, Berlin, 2000. MR 1774162, DOI 10.1007/BFb0103908
- Kohtaro Watanabe, Lyapunov type inequality for the equation including 1-dim $p$-Laplacian, Math. Inequal. Appl. 15 (2012), no. 3, 657–662. MR 2962461, DOI 10.7153/mia-15-58
- Aurel Wintner, On the non-existence of conjugate points, Amer. J. Math. 73 (1951), 368–380. MR 42005, DOI 10.2307/2372182
- Eberhard Zeidler, Lectures on Lyusternik-Schnirelman theory for indefinite nonlinear eigenvalue problems and its applications, Nonlinear analysis, function spaces and applications (Proc. Spring School, Horni Bradlo, 1978) Teubner, Leipzig, 1979, pp. 176–219. MR 578914
Bibliographic Information
- Julián Fernández Bonder
- Affiliation: Departamento de Matemática and IMAS - CONICET, FCEyN - Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I (1428) Av. Cantilo s/n. Buenos Aires, Argentina
- Email: jfbonder@dm.uba.ar
- Juan Pablo Pinasco
- Affiliation: Departamento de Matemática and IMAS - CONICET, FCEyN - Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I (1428) Av. Cantilo s/n. Buenos Aires, Argentina.
- Email: jpinasco@dm.uba.ar
- Ariel Martin Salort
- Affiliation: Departamento de Matemática and IMAS - CONICET, FCEyN - Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I (1428) Av. Cantilo s/n. Buenos Aires, Argentina
- MR Author ID: 906665
- Email: asalort@dm.uba.ar
- Received by editor(s): December 27, 2014
- Received by editor(s) in revised form: May 6, 2015
- Published electronically: September 15, 2015
- Additional Notes: The authors are members of CONICET (Argentina). This work was partially supported by Universidad de Buenos Aires under grant 20020130100283BA, and ANPCyT PICT2012 0153.
- Communicated by: Catherine Sulem
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 1669-1680
- MSC (2010): Primary 35P15, 35B27; Secondary 35P30
- DOI: https://doi.org/10.1090/proc/12871
- MathSciNet review: 3451242