A characterization of the mixed discriminant
HTML articles powered by AMS MathViewer
- by D. Florentin, V. D. Milman and R. Schneider
- Proc. Amer. Math. Soc. 144 (2016), 2197-2204
- DOI: https://doi.org/10.1090/proc/12344
- Published electronically: January 27, 2016
- PDF | Request permission
Abstract:
Suppose that a function of $n$ positive semidefinite $n \times n$ matrices is additive in each variable and nonnegative. If the function vanishes whenever two of its arguments are proporitional matrices of rank one, then it is a constant multiple of the mixed discriminant.References
- A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpern, IV. Die gemischten Diskriminanten und die gemischten Volumina (in Russian). Mat. Sbornik. N.S. 3 (1938), 227–251.
- R. B. Bapat, Mixed discriminants of positive semidefinite matrices, Linear Algebra Appl. 126 (1989), 107–124. MR 1040776, DOI 10.1016/0024-3795(89)90009-8
- Herbert Busemann, Convex surfaces, Interscience Tracts in Pure and Applied Mathematics, no. 6, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. MR 0105155
- Wm. J. Firey, $p$-means of convex bodies, Math. Scand. 10 (1962), 17–24. MR 141003, DOI 10.7146/math.scand.a-10510
- Kurt Leichtweiß, Convexity and differential geometry, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 1045–1080. MR 1243002
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131–150. MR 1231704
- Vitali D. Milman and Rolf Schneider, Characterizing the mixed volume, Adv. Geom. 11 (2011), no. 4, 669–689. MR 2852926, DOI 10.1515/ADVGEOM.2011.023
- A. A. Panov, On some properties of mixed discriminants, Math. USSR Sbornik 56 (1987), 279–293.
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521, DOI 10.1017/CBO9780511526282
Bibliographic Information
- D. Florentin
- Affiliation: School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- V. D. Milman
- Affiliation: School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- MR Author ID: 125020
- ORCID: 0000-0003-4632-5487
- R. Schneider
- Affiliation: Mathematisches Institut, Albert-Ludwigs-Universität, Eckerstr. 1, D–79104, Freiburg i. Br., Germany
- MR Author ID: 199426
- ORCID: 0000-0003-0039-3417
- Received by editor(s): June 12, 2013
- Received by editor(s) in revised form: August 26, 2013
- Published electronically: January 27, 2016
- Additional Notes: The second author was supported in part by Minerva Foundation, ISF grant 826/13 and by BSF grant 2012111.
- Communicated by: Michael Wolf
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 2197-2204
- MSC (2010): Primary 52A39, 15A15
- DOI: https://doi.org/10.1090/proc/12344
- MathSciNet review: 3460178