Operator-Lipschitz estimates for the singular value functional calculus
Authors:
Fredrik Andersson, Marcus Carlsson and Karl-Mikael Perfekt
Journal:
Proc. Amer. Math. Soc. 144 (2016), 1867-1875
MSC (2010):
Primary 15A18, 15A60, 47A60; Secondary 15A16, 15A45, 47A30, 47A55, 47B10
DOI:
https://doi.org/10.1090/proc/12843
Published electronically:
September 11, 2015
MathSciNet review:
3460149
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We consider a functional calculus for compact operators, acting on the singular values rather than the spectrum, which appears frequently in applied mathematics. Necessary and sufficient conditions for this singular value functional calculus to be Lipschitz-continuous with respect to the Hilbert-Schmidt norm are given. We also provide sharp constants.
- Aleksei Aleksandrov and Vladimir Peller, Functions of perturbed operators, C. R. Math. Acad. Sci. Paris 347 (2009), no. 9-10, 483–488 (English, with English and French summaries). MR 2576894, DOI 10.1016/j.crma.2009.03.004
- A.B. Aleksandrov, V.V. Peller, D.S. Potapov, and F.A. Sukochev, Functions of normal operators under perturbations, Advances in Mathematics, 226(6), 2011.
- Fredrik Andersson and Marcus Carlsson, Alternating projections on nontangential manifolds, Constr. Approx. 38 (2013), no. 3, 489–525. MR 3122280, DOI 10.1007/s00365-013-9213-3
- Fredrik Andersson, Marcus Carlsson, Jean-Yves Tourneret, and Herwig Wendt, A new frequency estimation method for equally and unequally spaced data, IEEE Trans. Signal Process. 62 (2014), no. 21, 5761–5774. MR 3273530, DOI 10.1109/TSP.2014.2358961
- Huzihiro Araki and Shigeru Yamagami, An inequality for Hilbert-Schmidt norm, Comm. Math. Phys. 81 (1981), no. 1, 89–96. MR 630332
- Rajendra Bhatia, Matrix analysis, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997. MR 1477662, DOI 10.1007/978-1-4612-0653-8
- M. Š. Birman and M. Z. Solomjak, Double Stieltjes operator integrals, Probl. Math. Phys., No. I, Spectral Theory and Wave Processes (Russian), Izdat. Leningrad. Univ., Leningrad, 1966, pp. 33–67 (Russian). MR 0209872
- Emmanuel J. Candès, Carlos A. Sing-Long, and Joshua D. Trzasko, Unbiased risk estimates for singular value thresholding and spectral estimators, IEEE Trans. Signal Process. 61 (2013), no. 19, 4643–4657. MR 3105401, DOI 10.1109/TSP.2013.2270464
- Moody T. Chu, Robert E. Funderlic, and Robert J. Plemmons, Structured low rank approximation, Linear Algebra Appl. 366 (2003), 157–172. Special issue on structured matrices: analysis, algorithms and applications (Cortona, 2000). MR 1987719, DOI 10.1016/S0024-3795(02)00505-0
- C. Ding, D. Sun, J. Sun, and K-C. Toh, Spectral operators of matrices, arXiv:1401.2269, 2014.
- Yu. B. Farforovskaya and L. Nikolskaya, Modulus of continuity of operator functions, Algebra i Analiz 20 (2008), no. 3, 224–242; English transl., St. Petersburg Math. J. 20 (2009), no. 3, 493–506. MR 2454458, DOI 10.1090/S1061-0022-09-01058-9
- M. Fazel, H. Hindi, and S. P. Boyd, A rank minimization heuristic with application to minimum order system approximation, American Control Conference, 2001. Proceedings of the 2001, volume 6, pages 4734–4739. IEEE, 2001.
- Nicholas J. Higham, Computing the nearest correlation matrix—a problem from finance, IMA J. Numer. Anal. 22 (2002), no. 3, 329–343. MR 1918653, DOI 10.1093/imanum/22.3.329
- Fuad Kittaneh, On Lipschitz functions of normal operators, Proc. Amer. Math. Soc. 94 (1985), no. 3, 416–418. MR 787884, DOI 10.1090/S0002-9939-1985-0787884-4
- V. Larsson and C. Olsson, Convex envelopes for low rank approximation, Energy Minimization Methods in Computer Vision and Pattern Recognition, pages 1–14. Springer, 2015.
- V. Larsson, C. Olsson, E. Bylow, and F. Kahl, Rank minimization with structured data patterns, Computer Vision–ECCV 2014, pages 250–265. Springer, 2014.
- H. Minkowski, Geometrie der zahlen, 1910.
- Denis Potapov and Fedor Sukochev, Operator-Lipschitz functions in Schatten-von Neumann classes, Acta Math. 207 (2011), no. 2, 375–389. MR 2892613, DOI 10.1007/s11511-012-0072-8
- Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev. 52 (2010), no. 3, 471–501. MR 2680543, DOI 10.1137/070697835
- R. Tyrrell Rockafellar and Roger J.-B. Wets, Variational analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317, Springer-Verlag, Berlin, 1998. MR 1491362, DOI 10.1007/978-3-642-02431-3
- Barry Simon, Trace ideals and their applications, London Mathematical Society Lecture Note Series, vol. 35, Cambridge University Press, Cambridge-New York, 1979. MR 541149
- Thomas P. Wihler, On the Hölder continuity of matrix functions for normal matrices, JIPAM. J. Inequal. Pure Appl. Math. 10 (2009), no. 4, Article 91, 5. MR 2577861
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 15A18, 15A60, 47A60, 15A16, 15A45, 47A30, 47A55, 47B10
Retrieve articles in all journals with MSC (2010): 15A18, 15A60, 47A60, 15A16, 15A45, 47A30, 47A55, 47B10
Additional Information
Fredrik Andersson
Affiliation:
Centre for Mathematical Sciences, Lund University, 22100 Lund, Sweden
Email:
fa@maths.lth.se
Marcus Carlsson
Affiliation:
Centre for Mathematical Sciences, Lund University, 22100 Lund, Sweden
Email:
marcus.carlsson@math.lu.se
Karl-Mikael Perfekt
Affiliation:
Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
Email:
karl-mikael.perfekt@math.ntnu.no
Keywords:
Lipschitz estimates,
functional calculus,
singular values,
doubly substochastic matrices
Received by editor(s):
March 16, 2015
Received by editor(s) in revised form:
May 16, 2015
Published electronically:
September 11, 2015
Communicated by:
Pamela B. Gorkin
Article copyright:
© Copyright 2015
American Mathematical Society