An unusual continued fraction
HTML articles powered by AMS MathViewer
- by Dzmitry Badziahin and Jeffrey Shallit
- Proc. Amer. Math. Soc. 144 (2016), 1887-1896
- DOI: https://doi.org/10.1090/proc/12848
- Published electronically: September 15, 2015
- PDF | Request permission
Abstract:
We consider the real number $\sigma$ with continued fraction expansion $[a_0, a_1, a_2,\ldots ] = [1,2,1,4,1,2,1,8,1,2,1,4,1,2,1,16,\ldots ]$, where $a_i$ is the largest power of $2$ dividing $i+1$. We show that the irrationality measure of $\sigma ^2$ is at least $8/3$. We also show that certain partial quotients of $\sigma ^2$ grow doubly exponentially, thus confirming a conjecture of Hanna and Wilson.References
- Boris Adamczewski and Jean-Paul Allouche, Reversals and palindromes in continued fractions, Theoret. Comput. Sci. 380 (2007), no. 3, 220–237. MR 2330994, DOI 10.1016/j.tcs.2007.03.017
- Boris Adamczewski and Yann Bugeaud, On the complexity of algebraic numbers. II. Continued fractions, Acta Math. 195 (2005), 1–20. MR 2233683, DOI 10.1007/BF02588048
- Boris Adamczewski and Yann Bugeaud, A short proof of the transcendence of Thue-Morse continued fractions, Amer. Math. Monthly 114 (2007), no. 6, 536–540. MR 2321257, DOI 10.1080/00029890.2007.11920443
- Boris Adamczewski and Yann Bugeaud, Palindromic continued fractions, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 5, 1557–1574 (English, with English and French summaries). MR 2364142
- Boris Adamczewski and Yann Bugeaud, Transcendence measures for continued fractions involving repetitive or symmetric patterns, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 4, 883–914. MR 2654083, DOI 10.4171/JEMS/218
- J.-P. Allouche, J. L. Davison, M. Queffélec, and L. Q. Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory 91 (2001), no. 1, 39–66. MR 1869317, DOI 10.1006/jnth.2001.2669
- Jean-Paul Allouche and Jeffrey Shallit, The ring of $k$-regular sequences, Theoret. Comput. Sci. 98 (1992), no. 2, 163–197. MR 1166363, DOI 10.1016/0304-3975(92)90001-V
- Jean-Paul Allouche and Jeffrey Shallit, The ring of $k$-regular sequences. II, Theoret. Comput. Sci. 307 (2003), no. 1, 3–29. Words. MR 2014728, DOI 10.1016/S0304-3975(03)00090-2
- J. Borwein, A. van der Poorten, J. Shallit, and W. Zudilin, Neverending Fractions: An Introduction to Continued Fractions. Cambridge University Press, 2014.
- Yann Bugeaud, Continued fractions with low complexity: transcendence measures and quadratic approximation, Compos. Math. 148 (2012), no. 3, 718–750. MR 2925396, DOI 10.1112/S0010437X11007524
- Yann Bugeaud, Automatic continued fractions are transcendental or quadratic, Ann. Sci. Éc. Norm. Supér. (4) 46 (2013), no. 6, 1005–1022 (English, with English and French summaries). MR 3134686, DOI 10.24033/asens.2208
- J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957. MR 0087708
- J. S. Frame, Classroom Notes: Continued Fractions and Matrices, Amer. Math. Monthly 56 (1949), no. 2, 98–103. MR 1527170, DOI 10.2307/2306169
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 5th edition, 1985.
- A. Hurwitz, Über die Kettenbrüche, deren Teilnenner arithmetische Reihen bilden. Vierteljahrsschrift d. Naturforsch Gesellschaft in Zürich, Jahrg. 41 (1896), In Mathematische Werke, Band II, Birkhäuser, Basel, 1963, pp. 276–302.
- Adolf Hurwitz, Lectures on number theory, Universitext, Springer-Verlag, New York, 1986. Translated from the German and with a preface by William C. Schulz; Translation edited and with a preface by Nikolaos Kritikos. MR 816942
- Kjell Kolden, Continued fractions and linear substitutions, Arch. Math. Naturvid. 50 (1949), no. 6, 141–196. MR 32033
- E. Maillet, Introduction à la Théorie des Nombres Transcendants et des Propriétés Arithmétiques des Fonctions. Gauthier-Villars, 1906.
- K. R. Matthews and R. F. C. Walters, Some properties of the continued fraction expansion of $(m/n)e^{1/q}$, Proc. Cambridge Philos. Soc. 67 (1970), 67–74. MR 252889, DOI 10.1017/s0305004100057108
- Oskar Perron, Die Lehre von den Kettenbrüchen. Bd I. Elementare Kettenbrüche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1954 (German). 3te Aufl. MR 0064172
- M. Queffélec, Transcendance des fractions continues de Thue-Morse, J. Number Theory 73 (1998), no. 2, 201–211 (French, with French summary). MR 1658023, DOI 10.1006/jnth.1998.2305
- Martine Queffélec, Irrational numbers with automaton-generated continued fraction expansion, Dynamical systems (Luminy-Marseille, 1998) World Sci. Publ., River Edge, NJ, 2000, pp. 190–198. MR 1796159
- K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1–20; corrigendum, 168. MR 72182, DOI 10.1112/S0025579300000644
- N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, Available at http://oeis.org.
- R. F. C. Walters, Alternative derivation of some regular continued fractions, J. Austral. Math. Soc. 8 (1968), 205–212. MR 0226245
Bibliographic Information
- Dzmitry Badziahin
- Affiliation: Department of Mathematical Sciences, Durham University, Lower Mountjoy, Stockton Road, Durham, DH1 3LE, United Kingdom
- MR Author ID: 820873
- ORCID: 0000-0001-9062-2222
- Email: dzmitry.badziahin@durham.ac.uk
- Jeffrey Shallit
- Affiliation: School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- MR Author ID: 159555
- Email: shallit@cs.uwaterloo.ca
- Received by editor(s): May 4, 2015
- Received by editor(s) in revised form: May 26, 2015
- Published electronically: September 15, 2015
- Additional Notes: The research of the first author was supported by EPSRC Grant EP/L005204/1.
- Communicated by: Matthew A. Papanikolas
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 1887-1896
- MSC (2010): Primary 11J70, 11J82; Secondary 11Y65, 11A55
- DOI: https://doi.org/10.1090/proc/12848
- MathSciNet review: 3460151