INVERSE ITERATION FOR \(p \)-GROUND STATES

RYAN HYND AND ERIK LINDGREN

(Communicated by Jeremy Tyson)

Abstract. We adapt the inverse iteration method for symmetric matrices to some nonlinear PDE eigenvalue problems. In particular, for \(p \in (1, \infty) \) and a given domain \(\Omega \subset \mathbb{R}^n \), we analyze a scheme that allows us to approximate the smallest value the ratio \(\frac{\int_\Omega |D\psi|^p dx}{\int_\Omega |\psi|^p dx} \) can assume for functions \(\psi \) that vanish on \(\partial \Omega \). The scheme in question also provides a natural way to approximate minimizing \(\psi \). Our analysis also extends in the limit as \(p \to \infty \) and thereby fashions a new approximation method for ground states of the infinity Laplacian.

1. Introduction

In this paper, we will use a generalization of the inverse iteration method for symmetric matrices to estimate solutions of some nonlinear PDE eigenvalue problems. The first problem we consider is as follows. For \(p \in (1, \infty) \) and a bounded domain \(\Omega \subset \mathbb{R}^n \), we define

\[
\lambda_p := \inf \left\{ \frac{\int_\Omega |D\psi|^p dx}{\int_\Omega |\psi|^p dx} : \psi \in W^{1,p}_0(\Omega), \psi \not\equiv 0 \right\}.
\]

Here \(W^{1,p}_0(\Omega) \) is the closure of the smooth, compactly supported functions \(\phi : \Omega \to \mathbb{R} \) in the norm \((\int_\Omega |D\phi|^p dx)^{1/p} \); we refer readers to the sources [4,11] for information on Sobolev spaces and their applications to PDE. It is evident that \(1/\lambda_p \) is the smallest constant \(C \) for which the Poincaré inequality

\[
\int_\Omega |\psi|^p dx \leq C \int_\Omega |D\psi|^p dx, \quad \psi \in W^{1,p}_0(\Omega),
\]

holds.

The constant \(\lambda_p \) is also a type of eigenvalue. Indeed, minimizers in (1.1) are called \(p \)-ground states and satisfy the PDE

\[
\begin{cases}
-\Delta_p u = \lambda_p |u|^{p-2}u, & x \in \Omega, \\
u = 0, & x \in \partial \Omega.
\end{cases}
\]
Here, the operator $\Delta_p \psi := \text{div}(|D\psi|^{p-2} D\psi)$ is known as the p-Laplacian. It has been established that p-ground states exist and that any two are multiples of one another; see [10,13]. Consequently, λ_p is said to be simple.

We will use the following iteration scheme to approximate λ_p and p-ground states. Let $u_0 \in L^p(\Omega)$, and consider the family of PDE

$$
\begin{aligned}
(1.2) \quad \left\{
-\Delta_p u_k &= |u_{k-1}|^{p-2} u_{k-1}, & x \in \Omega, \\
 u_k &= 0, & x \in \partial \Omega,
\right.
\end{aligned}
$$

for $k \in \mathbb{N}$. It can be verified without too much difficulty that for a given u_0, there is a unique weak solution sequence $(u_k)_{k \in \mathbb{N}} \subset W_{0}^{1,p}(\Omega)$ of (1.2). That is, there is a unique sequence $(u_k)_{k \in \mathbb{N}} \subset W_{0}^{1,p}(\Omega)$ such that

$$
\int_{\Omega} |Du_k|^{p-2} Du_k \cdot D\phi dx = \int_{\Omega} |u_{k-1}|^{p-2} u_{k-1} \phi dx
$$

for each $\phi \in W_{0}^{1,p}(\Omega)$ and $k \in \mathbb{N}$. In fact, once $u_{k-1} \in L^p(\Omega)$ is known, u_k can be obtained by minimizing the functional

$$
W_{0}^{1,p}(\Omega) \ni v \mapsto \int_{\Omega} \left(\frac{1}{p} |Dv|^p - |u_{k-1}|^{p-2} u_{k-1} v \right) dx.
$$

As this functional is strictly convex and coercive, the existence of a unique minimizer follows from the “direct method” of the calculus of variations.

The following theorem details how the scheme (1.2) is related to λ_p and p-ground states.

Theorem 1.1. Assume $u_0 \in L^p(\Omega)$ and define

$$
\mu_p := \lambda_p^{\frac{1}{p-1}}.
$$

Then the limit

$$
\psi := \lim_{k \to \infty} \mu_p^k u_k
$$

exists in $W_{0}^{1,p}(\Omega)$. If $\psi \neq 0$, then ψ is a p-ground state and

$$
(1.3) \quad \lambda_p = \lim_{k \to \infty} \frac{\int_{\Omega} |Du_k|^p dx}{\int_{\Omega} |u_k|^p dx}.
$$

See inequality (2.4) below for a condition on u_0 that guarantees $\psi \neq 0$.

The iteration scheme (1.2) was introduced by R. Biezuner, G. Ercole, and E. Martins in [1] who conjectured the limit

$$
(1.4) \quad \lambda_p = \lim_{k \to \infty} \left(\frac{\int_{\Omega} |u_{k-1}|^p dx}{\int_{\Omega} |u_k|^p dx} \right)^{1-1/p}.
$$

We prove this limit holds under the hypotheses of Theorem 1.1 see Corollary 2.3. We also show that the sequences

$$
\left(\frac{\int_{\Omega} |Du_k|^p dx}{\int_{\Omega} |u_k|^p dx} \right)_{k \in \mathbb{N}} \text{ and } \left(\frac{\int_{\Omega} |u_{k-1}|^p dx}{\int_{\Omega} |u_k|^p dx} \right)_{k \in \mathbb{N}}
$$

are nonincreasing, which we regard as special features of the the iteration (1.2). See Proposition 2.4 below.
Next, we derive an iteration scheme in the limit as $p \to \infty$. Our motivation was the seminal work of P. Juutinen, P. Lindqvist, and J. Manfredi \cite{6}, where it was proven that $\lim_{p \to \infty} \lambda_p^{1/p}$ exists and equals
\[
\lambda_\infty := \inf \left\{ \frac{|D\psi|_{L^\infty(\Omega)}}{\|\psi\|_{L^\infty(\Omega)}} : \psi \in W_0^{1,\infty}(\Omega), \, \psi \neq 0 \right\}
= \left(\sup \{r : B_r(x) \subset \Omega \text{ for some } x \in \Omega \} \right)^{-1}.
\]
Here $W_0^{1,\infty}(\Omega)$ is the space of Lipschitz continuous functions $\psi : \overline{\Omega} \to \mathbb{R}$ that satisfy $\psi|_{\partial \Omega} = 0$. Furthermore, these authors also showed that there is a sequence $(u_{p_j})_{j \in \mathbb{N}}$ of p-ground states that converge uniformly to a viscosity solution $w \in W_0^{1,\infty}(\Omega)$ of the PDE
\[
\tag{1.5}
0 = \begin{cases}
\min \{-\Delta_{\infty} w, |Dw| - \lambda_\infty w\}, & w > 0, \\
-\Delta_{\infty} w, & w = 0, \\
\max \{-\Delta_{\infty} w, -|Dw| - \lambda_\infty w\}, & w < 0.
\end{cases}
\]
Here $\Delta_{\infty} := D^2 \psi D\psi \cdot D\psi$ is the infinity Laplacian, and nontrivial solutions of (1.5) that are positive within Ω are called ∞-ground states.

By passing to the limit as $p \to \infty$ in (1.2), we are able to conclude the subsequent result. The novelty in the theorem below is that (1.6) presents a new mechanism for generating ∞-ground states. However, we remark that a similar approximation scheme has been used by P. Juutinen in connection with (1.5); the interested reader may compare the theorem below to Lemma 6.12 of [6].

Theorem 1.2. Assume $u_0 \in C(\overline{\Omega})$ and denote $(u_{k,p})_{k \in \mathbb{N}}$ as the solution sequence of (1.2).

(i) There is a sequence $(p_j)_{j \in \mathbb{N}}$ increasing to ∞ and $(v_k)_{k \in \mathbb{N}} \subset W_0^{1,\infty}(\Omega)$ such that $u_{k,p_j} \to v_k$ uniformly on $\overline{\Omega}$ as $j \to \infty$ for each $k \in \mathbb{N}$. Moreover, v_k is a viscosity solution of the PDE
\[
\tag{1.6}
0 = \begin{cases}
\min \{-\Delta_{\infty} v_k, |Dv_k| - v_{k-1}\}, & v_{k-1} > 0, \\
-\Delta_{\infty} v_k, & v_{k-1} = 0, \\
\max \{-\Delta_{\infty} v_k, -|Dv_k| - v_{k-1}\}, & v_{k-1} < 0,
\end{cases}
\]
for each $k \in \mathbb{N}$. (Here $v_0 := u_0$.)

(ii) The limit $L := \lim_{k \to \infty} \lambda_\infty^k |Dv_k|_{L^\infty(\Omega)}$ exists. If $L > 0$, \[
\lambda_\infty = \lim_{k \to \infty} \frac{|Dv_k|_{L^\infty(\Omega)}}{|v_k|_{L^\infty(\Omega)}},
\]
and any uniformly convergent subsequence of $(\lambda_\infty^k v_k)_{k \in \mathbb{N}}$ converges to a solution of (1.5).

Remark 1.3. It turns out that if $u_0 \geq 0$ and $L > 0$, then any uniformly convergent subsequence of $(\lambda_\infty^k v_k)_{k \in \mathbb{N}}$ converges to an ∞-ground state.

We would especially like to thank Richard Tapia. After learning about our previous work \cite{5} which employed a doubly nonlinear flow to approximate λ_p and p-ground states, Professor Tapia suggested that it may be possible to use inverse iteration to obtain similar results. As noted above, the authors R. Biezuner, G. Ercole, and E. Martins were the first to make this observation in \cite{11}. Nevertheless, we
believe this paper adds significantly to [1] and makes clear the connection between inverse iteration and \(p \)-ground states.

2. Convergence of the scheme

Before proving Theorem 1.1 we will first make an observation which illuminates how \(\mu_p \) enters the statement of the theorem. In particular, we will find that \((\mu^k u_k)_{k \in \mathbb{N}}\) is bounded in \(W^{1,p}_0(\Omega) \) and \((\mu^k_p |Du_k|_{L^p(\Omega)})_{k \in \mathbb{N}}\) is a nonincreasing sequence of real numbers.

Lemma 2.1. For each \(k \in \mathbb{N} \),

\[
\mu_p^k \int_{\Omega} |Du_{k+1}|^p dx \leq \int_{\Omega} |Du_k|^p dx.
\]

Proof. Assume \(\int_{\Omega} |Du_{k+1}|^p dx \neq 0 \). We employ Hölder’s inequality and the Poincaré inequality to find

\[
\int_{\Omega} |Du_{k+1}|^p dx = \int_{\Omega} |Du_{k+1}|^{p-2} Du_{k+1} Du_{k+1} dx
\]

\[
= \int_{\Omega} |u_k|^{p-2} u_k u_{k+1} dx
\]

\[
\leq \left(\int_{\Omega} |u_k|^p dx \right)^{1-1/p} \left(\int_{\Omega} |u_{k+1}|^p dx \right)^{1/p}
\]

\[
\leq \left(\frac{1}{\lambda_p} \int_{\Omega} |Du_k|^p dx \right)^{1-1/p} \left(\frac{1}{\lambda_p} \int_{\Omega} |Du_{k+1}|^p dx \right)^{1/p}
\]

\[
= \frac{1}{\lambda_p} \left(\int_{\Omega} |Du_k|^p dx \right)^{1-1/p} \left(\int_{\Omega} |Du_{k+1}|^p dx \right)^{1/p}.
\]

Consequently,

\[
\int_{\Omega} |Du_{k+1}|^p dx \leq \frac{1}{\lambda_p^{p/(p-1)}} \int_{\Omega} |Du_k|^p dx,
\]

which proves the claim. \(\square \)

Remark 2.2. A minor variation in the proof of Lemma 2.1 gives the estimate

\[
(2.2) \quad \int_{\Omega} |Du_k|^p dx \leq \frac{1}{\mu_p} \int_{\Omega} |u_{k-1}|^p dx
\]

for each \(k \in \mathbb{N} \). This estimate will be employed in the proof of Theorem 1.2.

Also note that the proof of Lemma 2.1 amounts to multiplying the PDE \(-\Delta_p u_{k+1} = |u_k|^{p-2} u_k\) by \(u_{k+1} \) and integrating by parts. If we instead multiply by this equation by the \(W^{1,p}_0(\Omega) \) functions \(u_{k+1}^+ := \max\{u_{k+1}, 0\} \) and \(u_{k+1}^- := \max\{-u_{k+1}, 0\} \) and integrate by parts, we arrive at the inequalities

\[
(2.3) \quad \mu_p^k \int_{\Omega} |Du_{k+1}^+|^p dx \leq \int_{\Omega} |Du_k^+|^p dx
\]

for each \(k \in \mathbb{N} \). As a result, \((\mu^k_p |Du_k^+|_{L^p(\Omega)})_{k \in \mathbb{N}}\) are nonincreasing sequences.

Proof of Theorem 1.1. Set \(\psi_k := \mu_p^k u_k \) (\(k \in \mathbb{N} \)) and

\[
S := \lim_{k \to \infty} \int_{\Omega} |D\psi_k|^p dx.
\]
Observe that the limit defining S exists by Lemma 2.1. If $S = 0$, the assertion follows. Let us now assume otherwise.

Notice that $(\psi_k)_{k \in \mathbb{N}}$ satisfies the sequence of PDE
\[
\begin{aligned}
-\Delta_p \psi_k &= \lambda_p |\psi_{k-1}|^{p-2} \psi_{k-1}, & x \in \Omega, \\
\psi_k &= 0, & x \in \partial \Omega.
\end{aligned}
\]
By Lemma 2.1 and Rellich-Kondrachov compactness, there is $\psi \in W^{1,p}_0(\Omega)$ and a subsequence $(\psi_{k_j})_{j \in \mathbb{N}}$ so that $\psi_{k_j} \to \psi$ in $L^p(\Omega)$ and $D\psi_{k_j} \to D\psi$ in $L^p(\Omega; \mathbb{R}^n)$, as $j \to \infty$. Also note
\[
\int_\Omega |D\psi_{k_j}|^p \, dx = \lambda_p \int_\Omega |\psi|^{p-2} \psi_{k_j} \cdot D\psi_{k_j} \, dx = \lambda_p \int_\Omega |\psi_{k_j-1}|^{p-2} \psi_{k_j-1} \psi_{k_j} \, dx.
\]
Since $\psi_{k_j} \to \psi$ in $L^p(\Omega)$,
\[
\limsup_{j \to \infty} \int_\Omega |D\psi_{k_j}|^p \, dx = \lambda_p \int_\Omega |\psi|^p \, dx \leq \int_\Omega |D\psi|^p \, dx,
\]
and the weak convergence $D\psi_{k_j} \to D\psi$ in $L^p(\Omega; \mathbb{R}^n)$ gives
\[
\liminf_{j \to \infty} \int_\Omega |D\psi_{k_j}|^p \, dx \geq \int_\Omega |D\psi|^p \, dx.
\]
Thus, $\psi_{k_j} \to \psi$ in $W^{1,p}_0(\Omega)$, $S = \int_\Omega |D\psi|^p \, dx$ and
\[
\int_\Omega |D\psi|^p \, dx = \lambda_p \int_\Omega |\psi|^p \, dx.
\]
As $S > 0$, $\psi \not\equiv 0$ and thus ψ is a p-ground state. Without loss of generality, let us assume ψ is positive in Ω. In this case, $\psi_{k_j}^- \to 0$ in $L^p(\Omega)$. We use $D\psi_{k}^- = -D\psi_k \chi_{\{\psi_k < 0\}}$ to compute
\[
\int_\Omega |D\psi_{k_j}^-|^p \, dx = -\int_\Omega |D\psi_{k_j}|^{p-2} D\psi_{k_j} \cdot D\psi_{k_j}^- \, dx
\]
\[
= -\int_\Omega |\psi_{k_j-1}|^{p-2} \psi_{k_j-1} \psi_{k_j}^- \, dx
\]
\[
\leq \lambda_p \int_\Omega |\psi_{k_j-1}|^{p-2} \psi_{k_j-1} \psi_{k_j}^- \, dx.
\]
Consequently, $\psi_{k_j}^- \to 0$ in $W^{1,p}_0(\Omega)$. By the inequality (2.3) for $u_{k_j}^-$, the limit $\lim_{k \to \infty} \int_\Omega |D\psi_k|^p \, dx$ exists, which must equal 0 as a subsequence tends to 0. In particular, $\psi_{k_j}^- \to 0$ in $W^{1,p}_0(\Omega)$.

Since $\psi_k = \psi_k^+ - \psi_k^-$, every convergent subsequence of $(\psi_k)_{k \in \mathbb{N}}$ in $W^{1,p}_0(\Omega)$ is then necessarily nonnegative. Moreover, as S is the same for any subsequential limit, the simplicity of λ_p implies that $\psi_k \to \psi$ in $W^{1,p}_0(\Omega)$ as $k \to \infty$. It also follows that
\[
\lim_{k \to \infty} \frac{\int_\Omega |D\psi_k|^p \, dx}{\int_\Omega |\psi_k|^p \, dx} = \lim_{k \to \infty} \frac{\int_\Omega |D\psi_{k_j}|^p \, dx}{\int_\Omega |\psi_{k_j}|^p \, dx} = \frac{\int_\Omega |D\psi|^p \, dx}{\int_\Omega |\psi|^p \, dx} = \lambda_p.
\]

Corollary 2.3. Assume $\lim_{k \to \infty} \mu_k^p |Du_k|_{L^p(\Omega)} \not\equiv 0$; then the limit (1.4) holds.
Proof. Set $\psi_k := \mu_k^p u_k$. By the previous assertion, $(\psi_k)_{k \in \mathbb{N}}$ converges to a p-ground state in $W^{1,p}_0(\Omega)$. As a result,

$$\lim_{k \to \infty} \frac{\int_{\Omega} |u_{k-1}|^p dx}{\int_{\Omega} |u_k|^p dx} = \mu_k^p \lim_{k \to \infty} \frac{\int_{\Omega} |\psi_{k-1}|^p dx}{\int_{\Omega} |\psi_k|^p dx} = \lambda_p^{p/(p-1)},$$

\[\square \]

Observe that if u_0 is a p-ground state, then $(\mu_k^{-1} u_0)_{k \in \mathbb{N}}$ is a “separation of variables” solution of (1.2). This is a trivial case of Theorem 1.1. Also note that $\psi := \lim_{k \to \infty} \mu_k^p u_k$ could vanish identically; for instance, this occurs when $p = 2$ and u_0 is an eigenfunction of the Dirichlet Laplacian corresponding to an eigenvalue different than λ_2.

Similarly, if

\[u_0 \geq w \]

for a positive p-ground state w, then $-\Delta_p u_1 \geq -\Delta_p (\mu_p^{-1} w)$. As $u_0|_{\partial \Omega} = \mu_p^{-1} w|_{\partial \Omega} = 0$, $u_1 \geq \mu_p^{-1} w$. It follows from induction on $k \in \mathbb{N}$ that $u_k \geq \mu_p^{-k} w$. Therefore, we would have $\psi \not\equiv 0$. This same conclusion can be made with the help of a version of Hopf’s Lemma (as described in [12]), provided we assume $u_0 \geq 0$, $u_0 \not\equiv 0$ and additional regularity of $\partial \Omega$. These details are left to the reader.

We finish this section by establishing some fundamental properties of the iteration scheme (1.2). The monotonicity statement (2.5) below suggests the iteration scheme improves the Rayleigh quotient $\int_{\Omega} |D\psi|^p dx / \int_{\Omega} |\psi|^p dx$ at each step. Likewise, the subsequent inequality (2.6) gives more insight on the limit (1.4).

Proposition 2.4. Assume $u_0 \not\equiv 0$. Then $u_k \not\equiv 0$ for each $k \in \mathbb{N}$,

\[\frac{\int_{\Omega} |Du_{k+1}|^p dx}{\int_{\Omega} |u_{k+1}|^p dx} \leq \frac{\int_{\Omega} |Du_k|^p dx}{\int_{\Omega} |u_k|^p dx}, \]

and

\[\frac{\int_{\Omega} |u_k|^p dx}{\int_{\Omega} |u_{k+1}|^p dx} \leq \frac{\int_{\Omega} |u_{k-1}|^p dx}{\int_{\Omega} |u_k|^p dx} \]

for each $k \in \mathbb{N}$.

Proof. If $u_0 \not\equiv 0$, then $u_1 \not\equiv 0$ or (1.2) could not hold when $k = 1$. By induction, we may conclude $u_k \not\equiv 0$ for each $k \in \mathbb{N}$.

Now fix $k \in \mathbb{N}$ and observe

\[\int_{\Omega} |u_k|^p dx = \int_{\Omega} ([|u_k|^{p-2} u_k] u_k dx \]

\[= \int_{\Omega} |Du_{k+1}|^{p-2} Du_{k+1} \cdot Du_k dx \]

\[\leq \left(\int_{\Omega} |Du_{k+1}|^p dx \right)^{1-1/p} \left(\int_{\Omega} |Du_k|^p dx \right)^{1/p}. \]
Combining the bound (2.1) with (2.7) gives
\[
\frac{\int_{\Omega} |Du_{k+1}|^p dx}{\int_{\Omega} |u_{k+1}|^p dx} \leq \frac{\left(\int_{\Omega} |u_k|^p dx\right)^{1-1/p} \left(\int_{\Omega} |u_{k+1}|^p dx\right)^{1/p}}{\int_{\Omega} |u_{k+1}|^p dx} \leq \frac{\int_{\Omega} |Du_{k+1}|^p dx}{\int_{\Omega} |u_{k+1}|^p dx} \leq \frac{\left(\int_{\Omega} |Du_k|^p dx\right)^{1-1/p} \left(\int_{\Omega} |u_{k}|^p dx\right)^{1/p}}{\int_{\Omega} |u_{k+1}|^p dx} \leq \frac{\int_{\Omega} |Du_k|^p dx}{\int_{\Omega} |u_{k}|^p dx} \leq \frac{\left(\int_{\Omega} |u_k|^p dx\right)^{1-1/p} \left(\int_{\Omega} |u_{k-1}|^p dx\right)^{1/p}}{\int_{\Omega} |u_{k}|^p dx} = \left(\frac{\int_{\Omega} |Du_k|^p dx}{\int_{\Omega} |u_{k}|^p dx}\right)^{1/p} \left(\frac{\int_{\Omega} |u_{k-1}|^p dx}{\int_{\Omega} |u_{k}|^p dx}\right)^{1-1/p}.
\]
which verifies (2.5).

As for (2.6), we employ (2.7), (2.5) and (2.1) to find
\[
\frac{\int_{\Omega} |u_k|^p dx}{\int_{\Omega} |u_{k+1}|^p dx} \leq \frac{\left(\int_{\Omega} |Du_{k+1}|^p dx\right)^{1-1/p} \left(\int_{\Omega} |Du_k|^p dx\right)^{1/p}}{\int_{\Omega} |u_{k+1}|^p dx} \leq \frac{\left(\int_{\Omega} |u_k|^p dx\right)^{1-1/p} \left(\int_{\Omega} |u_{k-1}|^p dx\right)^{1/p}}{\int_{\Omega} |u_{k+1}|^p dx} = \left(\frac{\int_{\Omega} |Du_k|^p dx}{\int_{\Omega} |u_{k}|^p dx}\right)^{1/p} \left(\frac{\int_{\Omega} |u_{k-1}|^p dx}{\int_{\Omega} |u_{k}|^p dx}\right)^{1-1/p}.
\]

Remark 2.5. If \(u_0 \neq 0\), the sequences
\[
\left(\frac{\int_{\Omega} |Du_k|^p dx}{\int_{\Omega} |u_k|^p dx}\right)_{k \in \mathbb{N}} \text{ and } \left(\frac{\int_{\Omega} |u_{k-1}|^p dx}{\int_{\Omega} |u_k|^p dx}\right)_{k \in \mathbb{N}}
\]
are bounded below by \(\lambda_p\) and \(\lambda_p^{(p-1)}\), respectively; see Proposition 2.8 of [1]. In view of the monotonicity in (2.5) and (2.6), both of these sequences are convergent. However, the limits (1.3) and (1.4) may not hold if \(\lim_{k \to \infty} u_k \equiv 0\). For example, these limits fail if \(p = 2\) and \(u_0\) is an eigenfunction of the Dirichlet Laplacian that corresponds to an eigenvalue not equal to \(\lambda_2\).

3. The large \(p\) limit

This section is dedicated to a proof of Theorem 1.2 which characterizes the large \(p\) limit of the solutions of the iteration scheme (1.2). We begin with a technical observation regarding weak solution sequences \((u_k)_{k \in \mathbb{N}} \subset W^{1,p}_0(\Omega)\) of (1.2) when \(u_0 \in C(\Omega)\).

Lemma 3.1. Suppose \(u_0 \in C(\Omega)\), and let \((u_k)_{k \in \mathbb{N}} \subset W^{1,p}_0(\Omega)\) denote the associated solution sequence of (1.2). Then for each \(k \in \mathbb{N}\), there is \(\alpha_k \in (0,1)\) such that
\[
u_k \in C^{1,\alpha_k}_loc(\Omega) \cap L^\infty(\Omega).
\]
Proof. It suffices to verify the claim for $k = 1$; the case $k \geq 2$ then follows from induction. Recall that (1.2) implies $u_1 \in W^{1,p}_0(\Omega)$ is a weak solution of the solution of

$$
\begin{aligned}
-\Delta_p u_1 &= |u_0|^{p-2}u_0, \\ u_1 &= 0,
\end{aligned}
$$

$x \in \Omega$, $x \in \partial \Omega$.

We will use a weak comparison principle argument to bound u_1 from above and then from below. The regularity theory developed by E. DiBenedetto in [3] would then imply the existence of an $\alpha_1 \in (0,1)$ such that $u_1 \in C^{1,\alpha_1}_{\text{loc}}(\Omega)$.

To this end, we fix any $y \in \Omega$ and define

$$
w(x) := \frac{1}{qn^q} |x-y|^q, \quad x \in \Omega.
$$

Here $q = p/(p-1)$ is the Hölder exponent dual to p. Direct computation has $\Delta_p w(x) = 1$ for each $x \in \Omega$. It is also routine to verify that

$$
v := |u_0|_{L^\infty(\Omega)} \left(|w|_{L^\infty(\Omega)} - w \right)
$$

satisfies

$$
-\Delta_p v \geq |u_0|^{p-2}u_0, \quad x \in \Omega.
$$

Since $v|_{\partial \Omega} \geq 0 = u_1|_{\partial \Omega}$, a standard weak comparison argument implies $u_1 \leq v$ in Ω. In particular,

$$
u_1 \leq |w|_{L^\infty(\Omega)}|u_0|_{L^\infty(\Omega)}, \quad x \in \Omega.
$$

We can argue similarly to bound u from below and derive

$$
u_1 \geq -|w|_{L^\infty(\Omega)}|u_0|_{L^\infty(\Omega)}, \quad x \in \Omega.
$$

□

We have just established that the solution sequence $(u_k)_{k \in \mathbb{N}}$ of the inverse iteration scheme is continuous, provided that u_0 is continuous. Virtually the same argument given by P. Juutinen, P. Lindqvist and J. Manfredi in the proof of Theorem 2.5 of [9] implies that each u_k is additionally a viscosity solution of (1.2). That is, each solution sequence $(u_k)_{k \in \mathbb{N}} \subset C(\Omega)$ of (1.2) with $p \geq 2$ has the following property. For each $k \in \mathbb{N},$

$$
-\Delta_p \phi(x_0) \leq |u_{k-1}(x_0)|^{p-2}u_{k-1}(x_0)
$$

whenever $\phi \in C^2(\Omega)$ and $u_k - \phi$ has a local maximum at $x_0 \in \Omega$, and

$$
-\Delta_p \phi(x_0) \geq |u_{k-1}(x_0)|^{p-2}u_{k-1}(x_0)
$$

whenever $\phi \in C^2(\Omega)$ and $u_k - \phi$ has a local minimum at $x_0 \in \Omega$. We refer interested readers to the “User’s guide to viscosity solutions” [2] for more information on viscosity solutions of elliptic PDE, and we now proceed to prove Theorem 1.2.

Proof of Theorem 1.2 part (i). Employing Lemma 2.1 and inequality (2.2) for $k = 1$ gives

$$
|Du_{k,p}|_{L^p(\Omega)} \leq \frac{1}{\mu_{k-1}} |Du_{1,p}|_{L^p(\Omega)} \leq \frac{1}{\mu_p} \frac{|u_0|_{L^p(\Omega)}}{|u_0|_{L^{\infty}(\Omega)}} \leq \frac{1}{\mu_p} \frac{|\Omega|^{1/p}}{|u_0|_{L^{\infty}(\Omega)}}.
$$
Assume $p_0 > n$. For $p > p_0$, we can use the above inequality with H"older’s inequality to get
\[
|Du_{k,p}|_{L^{p_0}(\Omega)} \leq |\Omega|^\frac{1}{p_0} \left| \frac{1}{k - \frac{1}{p_0}} \right| |Du_{k,p}|_{L^p(\Omega)} \leq \frac{|\Omega|^{1/p_0}}{\mu_p^{k - 1 + 1/p_0}} |u_0|_{L^\infty(\Omega)}.
\]
By Morrey’s inequality and the limit $\lim_{p \to \infty} \mu_p = \lambda_\infty$,
\[(u_{k,p})_{p > p_0} \subset C^{1-n/p_0}(\Omega)\]
is bounded for each $k \in \mathbb{N}$. Therefore, the Arzelà-Ascoli Theorem and a standard diagonalization argument implies there is a sequence $(u_{k,p})_{k \in \mathbb{N}} \subset C^{1-n/p_0}(\Omega)$ and a sequence of positive numbers $(p_j)_{j \in \mathbb{N}}$ that are increasing and unbounded such that
\[v_k = \lim_{j \to \infty} u_{k,p_j}\]
in $C^{1-n/p_0}(\Omega)$ for each $k \in \mathbb{N}$.

Now let $p > r$, and employ H"older’s inequality with (2.2) to get
\[
\left(\frac{1}{|\Omega|} \int |Du_{k,p}|^r \, dx \right)^{1/r} \leq \left(\frac{1}{|\Omega|} \int |Du_{k,p}|^p \, dx \right)^{1/p} \leq \left(\frac{1}{|\Omega|} \frac{1}{\mu_p} \int |u_{k-1,p}|^p \, dx \right)^{1/p} \leq \frac{1}{\mu_p^{1/p}} |u_{k-1,p}|_{L^\infty(\Omega)}.
\]
The sequence $(u_{k,p})_{j \geq j_r}$ is then bounded in $W^{1,r}_0(\Omega)$ for some $j_r \in \mathbb{N}$ large enough and thus $(u_{k,p})_{j \in \mathbb{N}}$ converges to v_k weakly. Therefore, we can substitute $p = p_j$ above and send $j \to \infty$ to arrive at
\[
\left(\frac{1}{|\Omega|} \int |Dv_k|^r \, dx \right)^{1/r} \leq |v_{k-1}|_{L^\infty(\Omega)}
\]
for each $k \in \mathbb{N}$. And after sending $r \to \infty$,
\[(3.1) \quad |Dv_k|_{L^\infty(\Omega)} \leq |v_{k-1}|_{L^\infty(\Omega)}.
\]
In particular, we have verified that $(v_k)_{k \in \mathbb{N}} \subset W^{1,\infty}_0(\Omega)$.

It is now relatively standard to verify that for each $k \in \mathbb{N}$, v_k is a viscosity solution of the PDE (1.6):
\[
0 = \begin{cases}
\min\{-\Delta_\infty v_k, |Dv_k| - v_{k-1}\}, & v_{k-1} > 0, \\
-\Delta_\infty v_k, & v_{k-1} = 0, \\
\max\{-\Delta_\infty v_k, -|Dv_k| - v_{k-1}\}, & v_{k-1} < 0.
\end{cases}
\]
The required argument can be adapted from the proofs of Theorem 3.11 in [6], Theorem 1.21 in [8], or Section 4 of [7].

Proof of Theorem 1.2 part (ii). In view of (3.1),
\[
|Dv_k|_{L^\infty(\Omega)} \leq |v_{k-1}|_{L^\infty(\Omega)} \leq \frac{1}{\lambda_\infty^{k-1}} |Dv_{k-1}|_{L^\infty(\Omega)}.
\]
Therefore, the sequence $(\lambda_\infty^k |Dv_k|_{L^\infty(\Omega)})_{k \in \mathbb{N}}$ is nonincreasing, and the limit
\[L := \lim_{k \to \infty} \lambda_\infty^k |Dv_k|_{L^\infty(\Omega)}\]
exists. The inequality (3.1) also implies

\[|v_k|_{L^\infty(\Omega)} \leq \frac{1}{\lambda_{\infty}} |Dv_k|_{L^\infty(\Omega)} \leq \frac{1}{\lambda_{\infty}} |v_{k-1}|_{L^\infty(\Omega)}. \]

Consequently, \((\lambda_k^\infty |v_k|_{L^\infty(\Omega)})_{k \in \mathbb{N}}\) is nonincreasing and the limit

\[M := \lim_{k \to \infty} \lambda_k^\infty |v_k|_{L^\infty(\Omega)} \]

exists, as well.

Observe \(\lambda_k^\infty |Dv_k|_{L^\infty(\Omega)} \leq \lambda_{\infty} (\lambda_k^{\infty-1} |v_{k-1}|_{L^\infty(\Omega)})\) so that

\[L \leq \lambda_{\infty} M. \]

Moreover, \(\lambda_k^\infty |v_k|_{L^\infty(\Omega)} \leq \frac{1}{\lambda_{\infty}} \lambda_k^\infty |Dv_k|_{L^\infty(\Omega)}\), which implies

\[\lambda_{\infty} M \leq L. \]

Thus, \(\lambda_{\infty} M = L\), and when this quantity is nonzero,

\[\lambda_{\infty} = \lim_{k \to \infty} \frac{|Dv_k|_{L^\infty(\Omega)}}{|v_k|_{L^\infty(\Omega)}}. \]

Finally, note that the sequence \((w_k)_{k \in \mathbb{N}} := (\lambda_k^\infty v_k)_{k \in \mathbb{N}} \subset W^{1,\infty}_0(\Omega)\) satisfies the iteration scheme

\[0 = \begin{cases}
\min\{-\Delta_{\infty} w_k, |Dw_k| - \lambda_{\infty} w_{k-1}\}, & w_{k-1} > 0, \\
-\Delta_{\infty} w_k, & w_{k-1} = 0, \\
\max\{-\Delta_{\infty} w_k, -|Dw_k| - \lambda_{\infty} w_{k-1}\}, & w_{k-1} < 0,
\end{cases} \]

in the sense of viscosity solutions. Therefore, if a subsequence of \((\lambda_k^\infty v_k)_{k \in \mathbb{N}}\) converges uniformly on \(\Omega\), the stability of viscosity solutions implies that the limit function is necessarily a solution of (1.5). \(\square\)

REFERENCES

Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

E-mail address: rhynd@math.upenn.edu

Department of Mathematics, Royal Institute of Technology, 100 44 Stockholm, Sweden

E-mail address: eriklin@kth.se