Probabilistic estimates for tensor products of random vectors
HTML articles powered by AMS MathViewer
- by David Alonso-Gutiérrez, Markus Passenbrunner and Joscha Prochno
- Proc. Amer. Math. Soc. 144 (2016), 2133-2148
- DOI: https://doi.org/10.1090/proc/12883
- Published electronically: October 5, 2015
- PDF | Request permission
Abstract:
We prove some probabilistic estimates for tensor products of random vectors, generalizing results that were obtained by Gordon, Litvak, Schütt, and Werner [Ann. Probab., 30(4):1833–1853, 2002], and Prochno and Riemer [Houst. J. Math., 39(4):1301–1311, 2013]. As an application we obtain embeddings of certain matrix spaces into $L_1$.References
- David Alonso-Gutiérrez, Sören Christensen, Markus Passenbrunner, and Joscha Prochno, On the distribution of random variables corresponding to Musielak-Orlicz norms, Studia Math. 219 (2013), no. 3, 269–287. MR 3145554, DOI 10.4064/sm219-3-6
- David Alonso-Gutiérrez and Joscha Prochno, Estimating support functions of random polytopes via Orlicz norms, Discrete Comput. Geom. 49 (2013), no. 3, 558–588. MR 3038530, DOI 10.1007/s00454-012-9468-7
- D. Alonso-Gutiérrez and J. Prochno, Mean width of random perturbations of random polytopes, preprint, (2013).
- David Alonso-Gutiérrez and Joscha Prochno, On the Gaussian behavior of marginals and the mean width of random polytopes, Proc. Amer. Math. Soc. 143 (2015), no. 2, 821–832. MR 3283668, DOI 10.1090/S0002-9939-2014-12401-4
- Jean Bretagnolle and Didier Dacunha-Castelle, Application de l’étude de certaines formes linéaires aléatoires au plongement d’espaces de Banach dans des espaces $L^{p}$, Ann. Sci. École Norm. Sup. (4) 2 (1969), 437–480 (French). MR 265930
- Yehoram Gordon, Alexander Litvak, Carsten Schütt, and Elisabeth Werner, Geometry of spaces between polytopes and related zonotopes, Bull. Sci. Math. 126 (2002), no. 9, 733–762. MR 1941083, DOI 10.1016/S0007-4497(02)01139-9
- Yehoram Gordon, Alexander Litvak, Carsten Schütt, and Elisabeth Werner, Orlicz norms of sequences of random variables, Ann. Probab. 30 (2002), no. 4, 1833–1853. MR 1944007, DOI 10.1214/aop/1039548373
- Yehoram Gordon, Alexander Litvak, Carsten Schütt, and Elisabeth Werner, Minima of sequences of Gaussian random variables, C. R. Math. Acad. Sci. Paris 340 (2005), no. 6, 445–448 (English, with English and French summaries). MR 2135327, DOI 10.1016/j.crma.2005.02.003
- Yehoram Gordon, Alexander E. Litvak, Carsten Schütt, and Elisabeth Werner, Uniform estimates for order statistics and Orlicz functions, Positivity 16 (2012), no. 1, 1–28. MR 2892571, DOI 10.1007/s11117-010-0107-3
- M. A. Krasnosel′skiĭ and Ja. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961. Translated from the first Russian edition by Leo F. Boron. MR 0126722
- Stanisław Kwapień and Carsten Schütt, Some combinatorial and probabilistic inequalities and their application to Banach space theory, Studia Math. 82 (1985), no. 1, 91–106. MR 809774, DOI 10.4064/sm-82-1-91-106
- Stanisław Kwapień and Carsten Schütt, Some combinatorial and probabilistic inequalities and their application to Banach space theory. II, Studia Math. 95 (1989), no. 2, 141–154. MR 1038501, DOI 10.4064/sm-95-2-141-154
- Richard Lechner, Markus Passenbrunner, and Joscha Prochno, Uniform estimates for averages of order statistics of matrices, Electron. Commun. Probab. 20 (2015), no. 27, 12. MR 3327866, DOI 10.1214/ECP.v20-3992
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, Springer-Verlag, Berlin-New York, 1977. Sequence spaces. MR 0500056
- Joscha Prochno, A combinatorial approach to Musielak-Orlicz spaces, Banach J. Math. Anal. 7 (2013), no. 1, 132–141. MR 3004272, DOI 10.15352/bjma/1358864554
- Joscha Prochno, Musielak-Orlicz spaces that are isomorphic to subspaces of ${L}_1$, Ann. Funct. Anal. 6 (2015), no. 1.
- Joscha Prochno and Stiene Riemer, On the maximum of random variables on product spaces, Houston J. Math. 39 (2013), no. 4, 1301–1311. MR 3164717, DOI 10.1016/j.compeleceng.2013.03.005
- Joscha Prochno and Carsten Schütt, Combinatorial inequalities and subspaces of $L_1$, Studia Math. 211 (2012), no. 1, 21–39. MR 2990557, DOI 10.4064/sm211-1-2
- M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991. MR 1113700, DOI 10.1080/03601239109372748
- Y. Raynaud and C. Schütt, Some results on symmetric subspaces of $L_1$, Studia Math. 89 (1988), no. 1, 27–35. MR 951082, DOI 10.4064/sm-89-1-27-35
- Gideon Schechtman, Matrix subspaces of $L_1$, Studia Math. 215 (2013), no. 3, 281–285. MR 3080783, DOI 10.4064/sm215-3-5
- Carsten Schütt, Lorentz spaces that are isomorphic to subspaces of $L^1$, Trans. Amer. Math. Soc. 314 (1989), no. 2, 583–595. MR 974527, DOI 10.1090/S0002-9947-1989-0974527-8
- Carsten Schütt, On the embedding of $2$-concave Orlicz spaces into $L^1$, Studia Math. 113 (1995), no. 1, 73–80. MR 1315523, DOI 10.4064/sm-113-1-73-80
- Nicole Tomczak-Jaegermann, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 993774
Bibliographic Information
- David Alonso-Gutiérrez
- Affiliation: Departament de Matemàtiques, Universitat Jaume I, Campus de Riu Sec, E12071 Castelló de la Plana, Spain
- MR Author ID: 840424
- Email: alonsod@uji.es
- Markus Passenbrunner
- Affiliation: Institute of Analysis, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
- MR Author ID: 951570
- Email: markus.passenbrunner@jku.at
- Joscha Prochno
- Affiliation: Institute of Analysis, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
- Address at time of publication: Department of Mathematics, University of Hull, Robert Blackburn Building, Hull, HU6 7RX, United Kingdom
- MR Author ID: 997160
- Email: j.prochno@hull.ac.uk
- Received by editor(s): April 29, 2014
- Received by editor(s) in revised form: June 10, 2015
- Published electronically: October 5, 2015
- Additional Notes: The first author was partially supported by Instituto de Matemáticas y Aplicaciones de Castellón, MINECO project MTM2013-42105-P, and BANCAJA project P1-1B2014-35
The second author was supported by the Austrian Science Fund, FWF P23987 and P27723
The third author was supported by the Austrian Science Fund, FWFM 1628000. - Communicated by: Thomas Schlumprecht
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 2133-2148
- MSC (2010): Primary 46B09, 46B07, 46B28, 46B45
- DOI: https://doi.org/10.1090/proc/12883
- MathSciNet review: 3460173