Subelliptic and parametric equations on Carnot groups
HTML articles powered by AMS MathViewer
- by Giovanni Molica Bisci and Massimiliano Ferrara
- Proc. Amer. Math. Soc. 144 (2016), 3035-3045
- DOI: https://doi.org/10.1090/proc/12948
- Published electronically: November 6, 2015
- PDF | Request permission
Abstract:
This article concerns a class of elliptic equations on Carnot groups depending on one real parameter. Our approach is based on variational methods. More precisely, we establish the existence of at least two weak solutions for the treated problem by using a direct consequence of the celebrated Pucci-Serrin theorem and of a local minimum result for differentiable functionals due to Ricceri.References
- Giovanni Anello, A note on a problem by Ricceri on the Ambrosetti-Rabinowitz condition, Proc. Amer. Math. Soc. 135 (2007), no. 6, 1875–1879. MR 2286099, DOI 10.1090/S0002-9939-07-08674-1
- Zoltán M. Balogh and Alexandru Kristály, Lions-type compactness and Rubik actions on the Heisenberg group, Calc. Var. Partial Differential Equations 48 (2013), no. 1-2, 89–109. MR 3090536, DOI 10.1007/s00526-012-0543-y
- A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR 2363343
- Sara Bordoni, Roberta Filippucci, and Patrizia Pucci, Nonlinear elliptic inequalities with gradient terms on the Heisenberg group, Nonlinear Anal. 121 (2015), 262–279. MR 3348926, DOI 10.1016/j.na.2015.02.012
- Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). Théorie et applications. [Theory and applications]. MR 697382
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), no. 2, 161–207. MR 494315, DOI 10.1007/BF02386204
- G. B. Folland and E. M. Stein, Estimates for the $\bar \partial _{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. MR 367477, DOI 10.1002/cpa.3160270403
- Nicola Garofalo and Ermanno Lanconelli, Existence and nonexistence results for semilinear equations on the Heisenberg group, Indiana Univ. Math. J. 41 (1992), no. 1, 71–98. MR 1160903, DOI 10.1512/iumj.1992.41.41005
- Alexandru Kristály, Vicenţiu D. Rădulescu, and Csaba György Varga, Variational principles in mathematical physics, geometry, and economics, Encyclopedia of Mathematics and its Applications, vol. 136, Cambridge University Press, Cambridge, 2010. Qualitative analysis of nonlinear equations and unilateral problems; With a foreword by Jean Mawhin. MR 2683404, DOI 10.1017/CBO9780511760631
- Annunziata Loiudice, Semilinear subelliptic problems with critical growth on Carnot groups, Manuscripta Math. 124 (2007), no. 2, 247–259. MR 2341788, DOI 10.1007/s00229-007-0119-x
- Giovanni Molica Bisci and Vicenţiu D. Rădulescu, A characterization for elliptic problems on fractal sets, Proc. Amer. Math. Soc. 143 (2015), no. 7, 2959–2968. MR 3336620, DOI 10.1090/S0002-9939-2015-12475-6
- Andrea Pinamonti and Enrico Valdinoci, A Lewy-Stampacchia estimate for variational inequalities in the Heisenberg group, Rend. Istit. Mat. Univ. Trieste 45 (2013), 23–45. MR 3168296
- Patrizia Pucci and James Serrin, A mountain pass theorem, J. Differential Equations 60 (1985), no. 1, 142–149. MR 808262, DOI 10.1016/0022-0396(85)90125-1
- Biagio Ricceri, On a classical existence theorem for nonlinear elliptic equations, Constructive, experimental, and nonlinear analysis (Limoges, 1999) CRC Math. Model. Ser., vol. 27, CRC, Boca Raton, FL, 2000, pp. 275–278. MR 1777629
- Biagio Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000), no. 1-2, 401–410. Fixed point theory with applications in nonlinear analysis. MR 1735837, DOI 10.1016/S0377-0427(99)00269-1
- Biagio Ricceri, Nonlinear eigenvalue problems, Handbook of nonconvex analysis and applications, Int. Press, Somerville, MA, 2010, pp. 543–595. MR 2768819
- B. Ricceri, A new existence and localization theorem for the Dirichlet problem, Dynam. Systems Appl. 22 (2013), no. 2-3, 317–324. MR 3100206
Bibliographic Information
- Giovanni Molica Bisci
- Affiliation: Dipartimento P.A.U., Università degli Studi Mediterranea di Reggio Calabria, Salita Melissari - Feo di Vito, 89100 Reggio, Calabria, Italy
- Email: gmolica@unirc.it
- Massimiliano Ferrara
- Affiliation: University of Reggio Calabria and CRIOS University Bocconi of Milan, Via dei Bianchi presso Palazzo Zani, 89127 Reggio, Calabria, Italy
- MR Author ID: 660316
- Email: massimiliano.ferrara@unirc.it
- Received by editor(s): May 10, 2015
- Received by editor(s) in revised form: August 17, 2015, and September 3, 2015
- Published electronically: November 6, 2015
- Communicated by: Svitlana Mayboroda
- © Copyright 2015 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 3035-3045
- MSC (2010): Primary 35J65; Secondary 22E25
- DOI: https://doi.org/10.1090/proc/12948
- MathSciNet review: 3487234