Existence and nonexistence of half-geodesics on $S^2$
HTML articles powered by AMS MathViewer
- by Ian M. Adelstein
- Proc. Amer. Math. Soc. 144 (2016), 3085-3091
- DOI: https://doi.org/10.1090/proc/12918
- Published electronically: March 22, 2016
- PDF | Request permission
Abstract:
In this paper we study half-geodesics, those closed geodesics that minimize on any subinterval of length $L/2$, where $L$ is the length of the geodesic. For each nonnegative integer $n$, we construct Riemannian manifolds diffeomorphic to $S^2$ admitting exactly $n$ half-geodesics. Additionally, we construct a sequence of Riemannian manifolds, each of which is diffeomorphic to $S^2$ and admits no half-geodesics, yet which converge in the Gromov-Hausdorff sense to a limit space with infinitely many half-geodesics.References
- Ian Adelstein, Minimizing closed geodesics via critical points of the uniform energy, To appear, Math. Research Letters.
- Florent Balacheff, Christopher Croke, and Mikhail G. Katz, A Zoll counterexample to a geodesic length conjecture, Geom. Funct. Anal. 19 (2009), no. 1, 1â10. MR 2507217, DOI 10.1007/s00039-009-0708-9
- Victor Bangert, On the existence of closed geodesics on two-spheres, Internat. J. Math. 4 (1993), no. 1, 1â10. MR 1209957, DOI 10.1142/S0129167X93000029
- Marcel Berger, A panoramic view of Riemannian geometry, Springer-Verlag, Berlin, 2003. MR 2002701, DOI 10.1007/978-3-642-18245-7
- George D. Birkhoff, Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc. 18 (1917), no. 2, 199â300. MR 1501070, DOI 10.1090/S0002-9947-1917-1501070-3
- Jeff Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970), 61â74. MR 263092, DOI 10.2307/2373498
- John Franks, Geodesics on $S^2$ and periodic points of annulus homeomorphisms, Invent. Math. 108 (1992), no. 2, 403â418. MR 1161099, DOI 10.1007/BF02100612
- Detlef Gromoll and Wolfgang Meyer, Periodic geodesics on compact riemannian manifolds, J. Differential Geometry 3 (1969), 493â510. MR 264551
- Wing Kai Ho, Manifolds without ${1\over k}$-geodesics, Israel J. Math. 168 (2008), 189â200. MR 2448057, DOI 10.1007/s11856-008-1063-5
- L. A. Lyusternik and A. I. Fet, Variational problems on closed manifolds, Doklady Akad. Nauk SSSR (N.S.) 81 (1951), 17â18 (Russian). MR 0044760
- L.A. Lyusternik and L. Schnirelmann, Sur le problĂ©me de trois gĂ©odĂ©siques fermdÌes sur les surfaces de genre 0, C. R. Acad. Sci. Paris, 189:169â271, 1929.
- J. Milnor, Morse theory, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963. Based on lecture notes by M. Spivak and R. Wells. MR 0163331, DOI 10.1515/9781400881802
- Henri PoincarĂ©, Sur les lignes gĂ©odĂ©siques des surfaces convexes, Trans. Amer. Math. Soc. 6 (1905), no. 3, 237â274 (French). MR 1500710, DOI 10.1090/S0002-9947-1905-1500710-4
- Christina Sormani, Convergence and the length spectrum, Adv. Math. 213 (2007), no. 1, 405â439. MR 2331249, DOI 10.1016/j.aim.2007.01.001
Bibliographic Information
- Ian M. Adelstein
- Affiliation: Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755
- Email: iadelstein@gmail.com
- Received by editor(s): September 3, 2014
- Received by editor(s) in revised form: May 29, 2015
- Published electronically: March 22, 2016
- Communicated by: Michael Wolf
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 3085-3091
- MSC (2010): Primary 53C22
- DOI: https://doi.org/10.1090/proc/12918
- MathSciNet review: 3487238