Some nonexistence results for a semirelativistic Schrödinger equation with nongauge power type nonlinearity
HTML articles powered by AMS MathViewer
- by Takahisa Inui
- Proc. Amer. Math. Soc. 144 (2016), 2901-2909
- DOI: https://doi.org/10.1090/proc/12938
- Published electronically: March 18, 2016
- PDF | Request permission
Abstract:
We consider the following semirelativistic nonlinear Schrödinger equation (SNLS): \begin{equation} \left \{ \begin {array}{ll} i\partial _t u \pm (m^2-\Delta )^{1/2} u = \lambda |u|^{p}, & (t,x)\in [0,T)\times \mathbb {R}^d, \\ u(0,x)=u_0(x), & x \in \mathbb {R}^d, \end{array} \right . \notag \end{equation} where $m\geq 0$, $\lambda \in \mathbb {C} \setminus \{ 0\}$, $d\in \mathbb {N}$, $T>0$, and $\partial _t=\partial /\partial t$. Here $(m^2-\Delta )^{1/2}:=\mathcal {F}^{-1} (m^2+|\xi |^2 )^{1/2} \mathcal {F}$, where $\mathcal {F}$ denotes the Fourier transform. Fujiwara and Ozawa proved the nonexistence of global weak solutions to SNLS for some initial data in the case of $d=1$, $m=0$, and $1<p\leq 2$ by a test function method. In this paper, we extend their result to a more general setting: for example, $m\geq 0$, $d\in \mathbb {N}$, or $p>1$. Moreover, we obtain the upper estimates of weak solutions to SNLS. The key to the proof is to choose an appropriate test function.References
- Juan P. Borgna and Diego F. Rial, Existence of ground states for a one-dimensional relativistic Schrödinger equation, J. Math. Phys. 53 (2012), no. 6, 062301, 19. MR 2977673, DOI 10.1063/1.4726198
- Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047, DOI 10.1090/cln/010
- K. Fujiwara and T. Ozawa, Remarks on global solutions to the Cauchy problem for semirelativistic equations with power type nonlinearrity, preprint.
- Masahiro Ikeda and Takahisa Inui, Small data blow-up of $L^2$ or $H^1$-solution for the semilinear Schrödinger equation without gauge invariance, J. Evol. Equ. 15 (2015), no. 3, 571–581. MR 3394699, DOI 10.1007/s00028-015-0273-7
- Masahiro Ikeda and Takahisa Inui, Some non-existence results for the semilinear Schrödinger equation without gauge invariance, J. Math. Anal. Appl. 425 (2015), no. 2, 758–773. MR 3303890, DOI 10.1016/j.jmaa.2015.01.003
- Masahiro Ikeda and Yuta Wakasugi, A note on the lifespan of solutions to the semilinear damped wave equation, Proc. Amer. Math. Soc. 143 (2015), no. 1, 163–171. MR 3272741, DOI 10.1090/S0002-9939-2014-12201-5
- Masahiro Ikeda and Yuta Wakasugi, Small-data blow-up of $L^2$-solution for the nonlinear Schrödinger equation without gauge invariance, Differential Integral Equations 26 (2013), no. 11-12, 1275–1285. MR 3129009
- Joachim Krieger, Enno Lenzmann, and Pierre Raphaël, Nondispersive solutions to the $L^2$-critical half-wave equation, Arch. Ration. Mech. Anal. 209 (2013), no. 1, 61–129. MR 3054599, DOI 10.1007/s00205-013-0620-1
- Hiroyuki Takamura and Kyouhei Wakasa, The sharp upper bound of the lifespan of solutions to critical semilinear wave equations in high dimensions, J. Differential Equations 251 (2011), no. 4-5, 1157–1171. MR 2812585, DOI 10.1016/j.jde.2011.03.024
- Grozdena Todorova and Borislav Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001), no. 2, 464–489. MR 1846744, DOI 10.1006/jdeq.2000.3933
- Borislav T. Yordanov and Qi S. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal. 231 (2006), no. 2, 361–374. MR 2195336, DOI 10.1016/j.jfa.2005.03.012
- Qi S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 2, 109–114 (English, with English and French summaries). MR 1847355, DOI 10.1016/S0764-4442(01)01999-1
- Yi Zhou, Blow up of solutions to semilinear wave equations with critical exponent in high dimensions, Chinese Ann. Math. Ser. B 28 (2007), no. 2, 205–212. MR 2316656, DOI 10.1007/s11401-005-0205-x
Bibliographic Information
- Takahisa Inui
- Affiliation: Department of Mathematics, Kyoto University, Kyoto 60-5802, Japan
- MR Author ID: 1094227
- Email: inui@math.kyoto-u.ac.jp
- Received by editor(s): March 19, 2015
- Published electronically: March 18, 2016
- Communicated by: Joachim Krieger
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 2901-2909
- MSC (2010): Primary 35Q55
- DOI: https://doi.org/10.1090/proc/12938
- MathSciNet review: 3487223