On mapping theorems for numerical range
HTML articles powered by AMS MathViewer
- by Hubert Klaja, Javad Mashreghi and Thomas Ransford
- Proc. Amer. Math. Soc. 144 (2016), 3009-3018
- DOI: https://doi.org/10.1090/proc/12955
- Published electronically: January 27, 2016
- PDF | Request permission
Abstract:
Let $T$ be an operator on a Hilbert space $H$ with numerical radius $w(T)\le 1$. According to a theorem of Berger and Stampfli, if $f$ is a function in the disk algebra such that $f(0)=0$, then $w(f(T))\le \|f\|_\infty$. We give a new and elementary proof of this result using finite Blaschke products.
A well-known result relating numerical radius and norm says $\|T\| \leq 2w(T)$. We obtain a local improvement of this estimate, namely, if $w(T)\le 1$, then \[ \|Tx\|^2\le 2+2\sqrt {1-|\langle Tx,x\rangle |^2} \qquad (x\in H,~\|x\|\le 1). \] Using this refinement, we give a simplified proof of Drury’s teardrop theorem, which extends the Berger–Stampfli theorem to the case $f(0)\ne 0$.
References
- T. Ando, Structure of operators with numerical radius one, Acta Sci. Math. (Szeged) 34 (1973), 11–15. MR 318920
- C. A. Berger, A strange dilation theorem, Abstract 625–152, Notices Amer. Math. Soc. 12 (1965), 590.
- C. A. Berger and J. G. Stampfli, Mapping theorems for the numerical range, Amer. J. Math. 89 (1967), 1047–1055. MR 222694, DOI 10.2307/2373416
- Michel Crouzeix, Numerical range and functional calculus in Hilbert space, J. Funct. Anal. 244 (2007), no. 2, 668–690. MR 2297040, DOI 10.1016/j.jfa.2006.10.013
- Michael A. Dritschel and Hugo J. Woerdeman, Model theory and linear extreme points in the numerical radius unit ball, Mem. Amer. Math. Soc. 129 (1997), no. 615, viii+62. MR 1401492, DOI 10.1090/memo/0615
- S. W. Drury, Symbolic calculus of operators with unit numerical radius, Linear Algebra Appl. 428 (2008), no. 8-9, 2061–2069. MR 2401640, DOI 10.1016/j.laa.2007.11.007
- John B. Garnett, Bounded analytic functions, 1st ed., Graduate Texts in Mathematics, vol. 236, Springer, New York, 2007. MR 2261424
- Karl E. Gustafson and Duggirala K. M. Rao, Numerical range, Universitext, Springer-Verlag, New York, 1997. The field of values of linear operators and matrices. MR 1417493, DOI 10.1007/978-1-4613-8498-4
- Tosio Kato, Some mapping theorems for the numerical range, Proc. Japan Acad. 41 (1965), 652–655. MR 222693
- Carl Pearcy, An elementary proof of the power inequality for the numerical radius, Michigan Math. J. 13 (1966), 289–291. MR 201976
- Alexei Poltoratski and Donald Sarason, Aleksandrov-Clark measures, Recent advances in operator-related function theory, Contemp. Math., vol. 393, Amer. Math. Soc., Providence, RI, 2006, pp. 1–14. MR 2198367, DOI 10.1090/conm/393/07366
- Eero Saksman, An elementary introduction to Clark measures, Topics in complex analysis and operator theory, Univ. Málaga, Málaga, 2007, pp. 85–136. MR 2394657
Bibliographic Information
- Hubert Klaja
- Affiliation: Département de mathématiques et de statistique, Université Laval, 1045 avenue de la Médecine, Québec (QC), Canada G1V 0A6
- MR Author ID: 1040254
- Email: hubert.klaja@gmail.com
- Javad Mashreghi
- Affiliation: Département de mathématiques et de statistique, Université Laval, 1045 avenue de la Médecine, Québec (QC), Canada G1V 0A6
- MR Author ID: 679575
- Email: javad.mashreghi@mat.ulaval.ca
- Thomas Ransford
- Affiliation: Département de mathématiques et de statistique, Université Laval, 1045 avenue de la Médecine, Québec (QC), Canada G1V 0A6
- MR Author ID: 204108
- Email: ransford@mat.ulaval.ca
- Received by editor(s): April 24, 2015
- Received by editor(s) in revised form: September 1, 2015
- Published electronically: January 27, 2016
- Additional Notes: The second author was supported by NSERC
The third author was supported by NSERC and the Canada Research Chairs Program. - Communicated by: Pamela Gorkin
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 3009-3018
- MSC (2010): Primary 47A12; Secondary 15A60
- DOI: https://doi.org/10.1090/proc/12955
- MathSciNet review: 3487232