Preperiodic portraits for unicritical polynomials
HTML articles powered by AMS MathViewer
- by John R. Doyle
- Proc. Amer. Math. Soc. 144 (2016), 2885-2899
- DOI: https://doi.org/10.1090/proc/13075
- Published electronically: March 16, 2016
- PDF | Request permission
Abstract:
Let $K$ be an algebraically closed field of characteristic zero, and for $c \in K$ and an integer $d \ge 2$, define $f_{d,c}(z) := z^d + c \in K[z]$. We consider the following question: If we fix $x \in K$ and integers $M \ge 0$, $N \ge 1$, and $d \ge 2$, does there exist $c \in K$ such that, under iteration by $f_{d,c}$, the point $x$ enters into an $N$-cycle after precisely $M$ steps? We conclude that the answer is generally affirmative, and we explicitly give all counterexamples. When $d = 2$, this answers a question posed by Ghioca, Nguyen, and Tucker.References
- I. N. Baker, Fixpoints of polynomials and rational functions, J. London Math. Soc. 39 (1964), 615–622. MR 169989, DOI 10.1112/jlms/s1-39.1.615
- Thierry Bousch, Sur quelques problèmes de dynamique holomorphe, Ph.D. thesis, Université de Paris-Sud, Centre d’Orsay, 1992.
- Xavier Buff and Tan Lei, The quadratic dynatomic curves are smooth and irreducible, Frontiers in complex dynamics, Princeton Math. Ser., vol. 51, Princeton Univ. Press, Princeton, NJ, 2014, pp. 49–72. MR 3289906
- A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie II, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 85, Université de Paris-Sud, Département de Mathématiques, Orsay, 1985 (French). With the collaboration of P. Lavaurs, Tan Lei and P. Sentenac. MR 812271
- Yan Gao, Preperiodic dynatomic curves for $z \mapsto z^d + c$, Preprint. arXiv:1304.4849.
- Yan Gao and Yafei Ou, The dynatomic periodic curves for polynomial $z \mapsto z^d + c$ are smooth and irreducible, Preprint. arXiv:1304.4751.
- Dragos Ghioca, Khoa Nguyen, and Thomas J. Tucker, Portraits of preperiodic points for rational maps, Math. Proc. Cambridge Philos. Soc. 159 (2015), no. 1, 165–186. MR 3349337, DOI 10.1017/S0305004115000274
- Benjamin Hutz, Determination of all rational preperiodic points for morphisms of PN, Math. Comp. 84 (2015), no. 291, 289–308. MR 3266961, DOI 10.1090/S0025-5718-2014-02850-0
- Masashi Kisaka, On some exceptional rational maps, Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), no. 2, 35–38. MR 1326795
- Eike Lau and Dierk Schleicher, Internal addresses in the Mandelbrot set and irreducibility of polynomials, Stony Brook Preprint 19 (1994).
- Patrick Morton, On certain algebraic curves related to polynomial maps, Compositio Math. 103 (1996), no. 3, 319–350. MR 1414593
- Patrick Morton and Joseph H. Silverman, Rational periodic points of rational functions, Internat. Math. Res. Notices 2 (1994), 97–110. MR 1264933, DOI 10.1155/S1073792894000127
- Patrick Morton and Franco Vivaldi, Bifurcations and discriminants for polynomial maps, Nonlinearity 8 (1995), no. 4, 571–584. MR 1342504, DOI 10.1088/0951-7715/8/4/006
- T. Pezda, Cycles of polynomials in algebraically closed fields of positive characteristic, Colloq. Math. 67 (1994), no. 2, 187–195. MR 1305211, DOI 10.4064/cm-67-2-187-195
- T. Pezda, Cycles of polynomials in algebraically closed fields of positive chracteristic. II, Colloq. Math. 71 (1996), no. 1, 23–30. MR 1397363, DOI 10.4064/cm-71-1-23-30
- Tadeusz Pezda, Cycles of rational mappings in algebraically closed fields of positive characteristics, Ann. Math. Sil. 12 (1998), 15–21. Number theory (Cieszyn, 1998). MR 1673048
- Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407, DOI 10.1007/978-0-387-69904-2
Bibliographic Information
- John R. Doyle
- Affiliation: Department of Mathematics, University of Rochester, Rochester, New York 14627
- MR Author ID: 993361
- ORCID: 0000-0001-6476-0605
- Email: john.doyle@rochester.edu
- Received by editor(s): February 12, 2015
- Published electronically: March 16, 2016
- Communicated by: Matthew A. Papanikolas
- © Copyright 2016 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 144 (2016), 2885-2899
- MSC (2010): Primary 37F10; Secondary 37P05, 11R99
- DOI: https://doi.org/10.1090/proc/13075
- MathSciNet review: 3487222