SINGULAR INTEGRALS WITH ANGULAR INTEGRABILITY

FEDERICO CACCIAFESTA AND RENATO LUCA

Communicated by Alexander Iosevich

Abstract. In this note we prove a class of sharp inequalities for singular integral operators in weighted Lebesgue spaces with angular integrability.

1. Introduction

We consider singular integral operators
\[Tf(x) := \text{P.V.} \int_{\mathbb{R}^n} f(x - y)K(y) \, dy, \]
where the kernel \(K \) satisfies the following conditions:
\[|y|^n |K| \leq C, \quad |y|^{n+1} |\nabla K| \leq C, \quad |\hat{K}| \leq C. \]
Here \(C > 0 \) is a constant and \(\hat{\cdot} \) denotes the Fourier transform. The main example we have in mind is the directional Riesz transform, which corresponds to the choice \(K(y) := |y|^{-(n+1)}y \cdot \theta, \ \theta \in \mathbb{S}^{n-1}. \)

The study of the boundedness of these operators in weighted Lebesgue spaces \(L^p(w(x)dx), \) for \(1 < p < \infty \) and \(0 < w \in L^1_{\text{loc}}(\mathbb{R}^n), \) is a classical problem in harmonic analysis: in particular, Stein [13] proved it for the (sharp range of) homogeneous weights \(w(x) = |x|^{\alpha p}, \ -n/p < \alpha < n - n/p. \) The result was later extended by Coifman and Fefferman [2] to any \(A_p \) weight.

While the weighted \(L^p \)-theory has been extensively studied, less is known in the case of Lebesgue norms with different integrability in the radial and angular directions, namely
\[\|f\|_{L^p_{|x|^{\frac{n}{p}}}L^\tilde{p}_\theta} := \left(\int_0^{+\infty} \|f(\rho \cdot)\|^p_{L^\tilde{p}(\mathbb{S}^{n-1})} \rho^{n-1} \, d\rho \right)^{\frac{1}{p}}. \]

These mixed radial-angular spaces have been successfully used in recent years to improve several results in the framework of partial differential equations; see e.g. [1,8,10–12,14,15]. Notice that when \(p = \tilde{p} \) the norms reduce to the usual \(L^p \) norms. Notice also that, neglecting the constants, they are increasing in \(\tilde{p}, \) and that they behave as the \(L^p \) norms under homogeneous rescaling, namely \(f(\cdot) \to f(\lambda \cdot), \ \lambda > 0. \)

In a recent paper A. Córdoba [3] proved, among other things, the \(L^p_{|x|^{\frac{n}{p}}}L^\tilde{p}_\theta \) boundedness for operators of the form (1.1). Here we give an extension of this result to the weighted setting.
Theorem 1.1. Let $n \geq 2$, $1 < p < \infty$, $1 < \tilde{p} < \infty$ and $-n/p < \alpha < n - n/p$. Then
\begin{equation}
\| |x|^\alpha T\phi\|_{L^p_{|x|} L^{\tilde{p}}_{\theta}} \leq C\| |x|^\alpha \phi\|_{L^p_{|x|} L^{\tilde{p}}_{\theta}},
\end{equation}
where C is a constant depending only on α, p, \tilde{p}, n.

Let us point out that the case $\alpha = 0$, $1 < \tilde{p} < \infty$ in inequality (1.3) may be deduced by the application of Córdoba’s argument; see [6, Theorem 2.6]. Therefore the novelty of Theorem 1.1 is that it covers all the possible homogeneous weights of the kind $|x|^\alpha$.

Remark 1.1. Condition $-n/p < \alpha$ turns out to be necessary by testing the inequality on functions ϕ such that $\phi = 0$ and $T\phi > 0$ in a neighborhood of the origin. On the other hand, condition $\alpha < n - n/p$ turns out to be necessary for the same reason by considering the dual inequality.

Remark 1.2. One of the estimates (1.3) has been used in [6, Theorem 1.5] to deduce information about the regularity of weak solutions of the 3d Navier–Stokes problem with initial velocities satisfying good angular integrability properties.

We write $A \lesssim B$ if $A \leq CB$ with a constant C depending only on α, p, \tilde{p}, n. We write $A \simeq B$ if both $A \lesssim B$ and $B \lesssim A$.

2. Proof

We know by [6, Theorem 2.6] that inequality (1.3) is true in the case $\alpha = 0$, that is,
\begin{equation}
\| Tg\|_{L^p_{|x|} L^{\tilde{p}}_{\theta}} \lesssim \| g\|_{L^p_{|x|} L^{\tilde{p}}_{\theta}}.
\end{equation}

Following Stein [13], we now show that the weighted case (1.3) can be then deduced by the unweighted one. The next lemma represents the core of the proof.

Lemma 2.1. Let $n \geq 2$, $1 < p < \infty$, $1 \leq \tilde{p} \leq \infty$, $-n/p < \alpha < n - n/p$ and
\begin{equation}
F(x, y) := \frac{1 - (|x|/|y|)^\alpha}{|x - y|^n};
\end{equation}
then
\begin{equation}
\left\| \int_{\mathbb{R}^n} F(x, y) \phi(y) dy \right\|_{L^p_{|x|} L^{\tilde{p}}_{\theta}} \leq C\| \phi\|_{L^p_{|x|} L^{\tilde{p}}_{\theta}}.
\end{equation}

Assume indeed this has been proved and first apply inequality (2.1) with the choice $g := | \cdot |^\alpha f$ to have
\begin{equation}
\| T(|x|^\alpha f)\|_{L^p_{|x|} L^{\tilde{p}}_{\theta}} \lesssim \| |x|^\alpha f\|_{L^p_{|x|} L^{\tilde{p}}_{\theta}}.
\end{equation}
Then notice that
\begin{equation}
| T(|x|^\alpha f) - |x|^\alpha Tf | \leq \int_{\mathbb{R}^n} |K(x - y)(|y|^\alpha - |x|^\alpha) f(y)| dy \lesssim \int_{\mathbb{R}^n} \frac{|y|^\alpha - |x|^\alpha}{|x - y|^n} |f(y)| |y|^\alpha f(y) dy = \int_{\mathbb{R}^n} \frac{1 - (|x|/|y|)^\alpha}{|x - y|^n} |y|^\alpha f(y) dy,
\end{equation}
so that by using Lemma 2.1 with $\phi = | \cdot |^\alpha f$ we obtain
\begin{equation}
\| T(|x|^\alpha f) - |x|^\alpha Tf\|_{L^p_{|x|} L^{\tilde{p}}_{\theta}} \lesssim \| |x|^\alpha f\|_{L^p_{|x|} L^{\tilde{p}}_{\theta}}.
\end{equation}
Then, the desired estimate (1.3) follows by (2.4) and (2.5) and triangle inequality. Thus it only remains to prove Lemma 2.1.

The idea is to use a change of variables which resembles the standard polar coordinates. In this variant the integration over the sphere is replaced by integration over the special orthogonal group $SO(n)$ and the radial integration is replaced by integration over the multiplicative group of the positive real numbers. This method works efficiently when homogeneous power weights are involved; see e.g. [5,7].

Proof of Lemma 2.1 By using the isomorphism

$$S^{n-1} \simeq SO(n)/SO(n-1)$$

we can rewrite integrals on S^{n-1} as follows:

$$\int_{S^{n-1}} g(y) dS(y) \simeq \int_{SO(n)} g(Ae) dA, \quad n \geq 2,$$

where dA is the left Haar measure on $SO(n)$, and $e \in S^{n-1}$ is a fixed unit vector. Thus, via polar coordinates, a generic integral can be rewritten as

$$\int_{R^n} F(x,y) \phi(x) dy = \int_{0}^{\infty} \int_{S^{n-1}} F(x,\rho \omega) \phi(\rho \omega) dS_\omega \rho^{n-1} d\rho \simeq \int_{0}^{\infty} \int_{SO(n)} F(x,\rho Be) \phi(\rho Be) dB \rho^{n-1} d\rho.$$

Hence the L_{θ}^γ norm can be written as

$$\left\| \int_{R^n} F(|x|\theta, y) \phi(y) dy \right\|_{L_{\theta}^\gamma(S^{n-1})} \simeq \left\| \int_{R^n} F(|x|Ae, y) \phi(y) dy \right\|_{L_{\theta}^\gamma(SO(n))}$$

$$\leq \int_{0}^{\infty} \left\| \int_{SO(n)} F(|x|Ae, \rho Be) \phi(\rho Be) dB \right\|_{L_A^\gamma(SO(n))} \rho^{n-1} d\rho$$

where e is any fixed unit vector. We choose F as in (2.2) and we change variables $B \to AB^{-1}$ in the inner integral. By the invariance of the measure this is equivalent to

$$= \int_{0}^{\infty} \left\| \int_{SO(n)} \frac{|1 - (|x|/\rho)^\beta|}{|AB^{-1}(|x|Be - pe)|^n} \phi(\rho AB^{-1}e) dB \right\|_{L_A^\gamma(SO(n))} \rho^{n-1} d\rho$$

$$= \int_{0}^{\infty} \left\| \int_{SO(n)} \frac{|1 - (|x|/\rho)^\beta|}{|x|Be - pe|^n} \phi(\rho AB^{-1}e) dB \right\|_{L_A^\gamma(SO(n))} \rho^{n-1} d\rho.$$

Notice that the integral

$$\int_{SO(n)} \frac{|1 - (|x|/\rho)^\beta|}{|x|Be - pe|^n} \phi(\rho AB^{-1}e) dB = G \ast \phi(A)$$

is a convolution on $SO(n)$ of the functions

$$G(A) = \frac{|1 - (|x|/\rho)^\beta|}{|x|Ae - pe|^n}, \quad H(A) = |\phi(\rho Ae)|.$$
We can thus apply Young’s inequality on $SO(n)$ (see for instance [9, Theorem 1.2.12]) to obtain, for any $1 \leq \bar{p} \leq \infty$, the estimate
\[
(2.7) \quad \left\| \int_{\mathbb{R}^n} F(|x|, y) \phi(y) dy \right\|_{L_{\bar{p}}^p(S^{n-1})} \lesssim \int_0^\infty \left\| \frac{1 - (|x|/\rho)^\beta}{|x|/\rho - \theta} \right\|_{L_{\bar{p}}^p(S^{n-1})} \|\phi(\rho\theta)\|_{L_{\bar{p}}^p(S^{n-1})} \rho^{n-1} d\rho
\]
\[
= \int_0^\infty \left\| \frac{1 - (|x|/\rho)^\beta}{|x|/\rho - \theta} \right\|_{L_{\bar{p}}^p(S^{n-1})} \|\phi(\rho\theta)\|_{L_{\bar{p}}^p(S^{n-1})} \frac{d\rho}{\rho}
\]
where we switched back to the coordinates of S^{n-1}. Then we notice
\[
(2.8) \quad \left\| \int_{\mathbb{R}^n} F(|x|, y) \phi(y) dy \right\|_{L_{\bar{p}}^p} \leq \left\| \int_{\mathbb{R}^n} F(|x|, y) \phi(y) dy \right\|_{L_{\bar{p}}^p(S^{n-1})} dS_\theta |x|^{\frac{\bar{n}}{p}} \left\| L_{\bar{p}}^p(S^{n-1}) \right\|_{L^p(\mathbb{R}^+(\cdot), d|x|/|x|)}
\]
where $\mathbb{R}^+(\cdot)$ is the moltiplicative group of positive real numbers equipped with its Haar measure $d\rho/\rho$. Using (2.7) allows one to estimate (2.8) with
\[
\lesssim \left\| \int_0^\infty \left| \frac{1 - (|x|/\rho)^\beta}{|x|/\rho - \theta} \right| \rho^{\frac{n}{p}} \|\phi(\rho\theta)\|_{L_{\bar{p}}^p(S^{n-1})} \frac{d\rho}{\rho} \right\|_{L^p(\mathbb{R}^+(\cdot), d|x|/|x|)}
\]
Notice that the inner term is a convolution on $\mathbb{R}^+(\cdot)$ of the functions
\[
g(\rho) = \rho^{\frac{n}{p}} \left\| \frac{1 - (|x|/\rho)^\beta}{|x|/\rho - \theta} \right\|_{L_{\bar{p}}^p(S^{n-1})}, \quad h(\rho) = \rho^{\frac{n}{p}} \|\phi(\rho\theta)\|_{L_{\bar{p}}^p(S^{n-1})}.
\]
Thus we can apply again Young’s inequality to estimate further (2.8) with
\[
(2.9) \quad \lesssim \left\| g(\rho) \right\|_{L_{\bar{p}}^p(S^{n-1})} \left\| L^1(\mathbb{R}^+(\cdot), d\rho/\rho) \right\| \left\| h(\rho) \right\|_{L_{\bar{p}}^p(S^{n-1})} \left\| L^p(\mathbb{R}^+(\cdot), d\rho/\rho) \right\|,
\]
for all $1 \leq p \leq \infty$. Once we have noticed that
\[
\left\| h(\rho) \right\|_{L_{\bar{p}}^p(S^{n-1})} \left\| L^p(\mathbb{R}^+(\cdot), d\rho/\rho) \right\| = \left\| \phi \right\|_{L_{\bar{p}}^p(S^{n-1})},
\]
the concluding step of the proof of the lemma is represented by showing that the first term of (2.9) is bounded. We split the integral
\[
\int_0^{+\infty} \rho^{\frac{n}{p}} \int_{S^{n-1}} \frac{1 - (|x|/\rho)^\beta}{|x|/\rho - \theta} dS_\theta \frac{d\rho}{\rho} = \int_0^{\frac{1}{2}} (\cdot) + \int_{\frac{1}{2}}^{1} (\cdot) + \int_1^{+\infty} (\cdot) =: I + II + III
\]
and we bound separately the three terms.

If $0 < \rho < 1/2$, then $|\rho e - \theta| \geq 1/2$. Thus, since $|1 - \rho^\beta| < 1 + \rho^\beta$,
\[
I \lesssim \int_0^{\frac{1}{2}} (\rho^{\frac{n}{p} - 1} + \rho^{\frac{n}{p} - 1 + \beta}) d\rho < \infty
\]
provided that $p < \infty$ and $\beta > -n/p$.

If $1/2 \leq \rho \leq 2$, we notice that $|1 - \rho^\beta| \lesssim |1 - \rho|$ and we use that (see for instance Lemma 2.1 in [3])
\[
\int_{S^{n-1}} |\rho e - \theta|^{-n} dS_\theta \simeq \frac{1}{|1 - \rho|}
\]
to bound
\[(2.10) \quad II \sim \int_{\frac{1}{2}}^{2} \rho^{n-1} \frac{|1 - \rho^\beta|}{|1 - \rho|} d\rho \lesssim \int_{\frac{1}{2}}^{2} \rho^{n-1} d\rho < \infty.
\]

Finally, if \(2 < \rho < +\infty\), then \(|\rho e - \theta| \geq |\rho| - |\theta| \geq |\rho|/2\). Thus, since \(|1 - \rho^\beta| < 1 + \rho^\beta\),
\[III \lesssim \int_{2}^{+\infty} (\rho^{\frac{n}{p}-1-n} + \rho^{\frac{n}{p}-1+\beta-n}) d\rho < \infty\]
provided that \(p > 1\) and \(\beta < n - n/p\) and that concludes the proof. \(\square\)

ACKNOWLEDGEMENTS

The first author was supported by the FIRB 2012 ‘Dispersive dynamics, Fourier analysis and variational methods’. Part of the work was done during the first author’s visit at MSRI, Berkeley (CA), within the program ‘New Challenges in PDE: Deterministic Dynamics and Randomness in High and Infinite Dimensional Systems’, which he acknowledges for the wonderful working conditions.

The second author was supported by the ERC grant 277778 and MINECO grant SEV-2011-0087 (Spain).

REFERENCES

Dipartimento di Matematica, SAPIENZA — Università di Roma, Piazzale A. Moro 2, I-00185 Roma, Italy
E-mail address: cacciafe@mat.uniroma1.it

Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, Madrid, 28049, Spain
E-mail address: renato.luca@icmat.es